Streptococcus pneumonia
is an important human pathogen that causes various severe diseases such as pneumonia, otitis and meningitis. Vaccination against
S
.
pneumoniae
is implemented in many developed countries. The presently used vaccines are safe, well tolerated but relatively expensive and require modification due to the immunological changes of the epidemic strains. This paper describes the development of a new pneumococcal vaccine candidate for immunization on mucosal surfaces. For this purpose the antigens of chimeric protein PSPF, previously suggested for an injectable
S
.
pneumoniae
vaccine, were expressed on the surface of the live probiotic strain
Enterococcus faecium
L3. Experiments on laboratory mice vaccinated with live bacteria demonstrated the appearance of the specific IgA and IgG which provide protection against the lethal
S
.
pneumoniae
infection.
Streptococcus agalactiae, or group B streptococcus (GBS), is an important pathogen as it is the leading cause of neonatal deaths due to sepsis, meningitis or bacterial pneumonia. Although the development of an effective and safe GBS vaccine is on the agenda of many research labs, there is no GBS vaccine on the market yet. In the present study we attempted to engineer a live vaccine strain based on Bac, a surface protein of GBS, incorporated into a surface fimbrial protein of probiotic Enterococcus. The resulting strain induced specific systemic and local immune responses in mice and provided protection against GBS when administered via the intranasal, oral or intravaginal immunization routes.
The pathogenesis of acute poststreptococcal glomerulonephritis (APSGN), a major nonsuppurative complication of group A streptococcal (GAS) throat or skin disease, remains unclear. During the years, various theories based on certain streptococcal extracellular factors, as well as immunological mimicry between streptococci and renal tissue, have been forwarded. We earlier reported that many clinical GAS isolates with documented nephritogenic capacity show non-immune binding of monomeric or aggregated IgG. Moreover, in a rabbit model of APSGN we obtained evidence for an important role of streptococcal IgG Fc binding proteins (IgGFcBPs) belonging to the M family surface proteins; thus, hyperimmunization by whole IgGFcBP-positive streptococci was shown to induce renal glomerular changes with deposition of IgG and complement C3, resembling the picture recorded in human APSGN. These typical renal changes were always preceded by the appearance of circulating anti-IgG antibodies. In the present work, using the same rabbit model, each of two purified IgGFcBPs, isolated from type M22 GAS, were found to elicit glomerular degenerative damage comparable to that caused by whole bacteria, as well as formation of anti-IgG. In addition, the induction by whole streptococci (type M1) of experimental APSGN was inhibited by the i.v. administration of purified human or rabbit IgG Fc, but not Fab, fragment, supporting the importance of Fc-mediated mechanisms in causation of glomerulonephritis. We propose that anti-IgG antibody, induced by streptococcal IgGFcBP, facilitated renal accumulation of IgG-containing complexes, which in turn triggered complement deposition and proinflammatory cascades. Further studies on the possible beneficial effect of IgG Fc fragment in APSGN should be of interest.
Influenza and its bacterial complications are a leading cause of morbidity and mortality worldwide. The effect of combined immunization with live influenza vaccine and recombinant chimeric pneumococcal protein in dual infection caused by influenza H1N1 and S. pneumoniae (serotype 3) has been studied. The combined vaccine consisted of the strain A/California/2009/38 (H1N1) pdm and chimeric recombinant protein PSPF composed of immunodominant fragments of the surface virulence factors of S. pneumoniae—PsaA, PspA, and Shr1875—associated with modified salmonella flagellin. Vaccinated mice were infected with the influenza virus 24 hours before or 24 hours after the onset of pneumococcal infection. The protective effect of combined vaccination was shown on both models of viral-bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.