NUT midline carcinoma (NMC) is a rare, aggressive subtype of squamous carcinoma that is driven by the BRD4-NUT fusion oncoprotein. BRD4, a BET protein, binds to chromatin through its two bromodomains, and NUT recruits the p300 histone acetyltransferse (HAT) to activate transcription of oncogenic target genes. BET-selective bromodomain inhibitors have demonstrated on-target activity in patients with NMC, but with limited efficacy. P300, like BRD4, contains a bromodomain. We show that combining selective p300/CBP and BET bromodomain inhibitors, GNE-781 and OTX015, respectively, induces cooperative depletion of MYC and synergistic inhibition of NMC growth. Treatment of NMC cells with the novel dual p300/CBP and BET bromodomain-selective inhibitor, NEO2734, potently inhibits growth and induces differentiation of NMC cells in vitro; findings that correspond with potentiated transcriptional effects from combined BET and p300 bromodomain inhibition. In three disseminated NMC xenograft models, NEO2734 provided greater growth inhibition, with tumor regression and significant survival benefit seen in two of three models, compared with a lead clinical BET inhibitor or "standard" chemotherapy. Our findings provide a strong rationale for clinical study of NEO2734 in patients with NMC. Moreover, the synergistic inhibition of NMC growth by CBP/p300 and BET bromodomain inhibition lays the groundwork for greater mechanistic understanding of the interplay between p300 and BRD4-NUT that drives this cancer.
Highlights
Imaging the reorganization of pain neural circuitry within 8 days of chemotherapy.
Using rat model of neuropathy with multimodal MRI.
Showing loss of anticorrelation between prefrontal cortex and PAG.
Identifying the interaction between periaqueductal gray and brainstem raphe.
Nuclear protein of the testis (NUT) midline carcinoma (NMC), is a rare and highly aggressive form of undifferentiated squamous cell carcinoma. NMC is molecularly characterized by chromosomal rearrangement of the NUT gene to another gene, most commonly the bromodomain and extraterminal domain (BET) gene BRD4, forming the BRD4-NUT fusion oncogene. Therefore, inhibiting BRD4-NUT oncogenic function directly by BET inhibitors represents an attractive therapeutic approach but toxicity may limit the use of pan-BET inhibitors treating this cancer. We thus performed a drug screening approach using a library consisting of epigenetic compounds and ‘Donated Chemical Probes’ collated by the Structural Genomics Consortium (SGC) and identified the p300/CBP HAT inhibitor A-485, in addition to the well-known BET inhibitor JQ1, to be the most active candidate for NMC treatment. In contrast to JQ1, A-485 was selectively potent in NMC compared to other cell lines tested. Mechanistically, A-485 inhibited p300-mediated histone acetylation, leading to disruption of BRD4-NUT binding to hyperacetylated megadomains. Consistently, BRD4-NUT megadomain-associated genes MYC, CCAT1 and TP63 were downregulated by A-485. A-485 strongly induced squamous differentiation, cell cycle arrest and apoptosis. Combined inhibition of p300/CBP and BET showed synergistic effects. In summary, we identified the p300/CBP HAT domain as a putative therapeutic target in highly therapy-resistant NMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.