Threshold voltage shifts of a-IGZO TFTs on plastics against biastemperature stress were successfully reduced below 0.03 V, equivalent to those on glass substrates. We have developed an 11.7inch qHD (960×RGB×540) flexible bottom-emission active-matrix organic light-emitting diode (AMOLED) driven by a-IGZO TFT backplane fabricated on a transparent polyimide film.
ZnO nanorod arrays on Si (1 0 0) substrate were grown by the pulsed laser deposition (PLD) method, and then coated with Au. Two samples of Au-coated nanorod arrays with different average diameters of 150 and 400 nm were prepared to investigate the size dependence of the surface enhanced Raman scattering (SERS). The diameter of the nanorods was controllable by the substrate position during PLD. High SERS enhancement was observed from both Au-coated ZnO nanorod arrays. The Raman spectra of rhodamine 6G (R6G) as low as 1 nM were measured with an average diameter of 400 nm at an excitation wavelength of 532 nm. The SERS was explained by the field enhancement effect induced by surface plasmon polaritons of Au-coated nanorods (nanoshells).
We have successfully reduced threshold voltage shifts of amorphous In–Ga–Zn–O thin‐film transistors (a‐IGZO TFTs) on transparent polyimide films against bias‐temperature stress below 100 mV, which is equivalent to those on glass substrates. This high reliability was achieved by dense IGZO thin films and annealing temperature below 300 °C. We have reduced bulk defects of IGZO thin films and interface defects between gate insulator and IGZO thin film by optimizing deposition conditions of IGZO thin films and annealing conditions. Furthermore, a 3.0‐in. flexible active‐matrix organic light‐emitting diode was demonstrated with the highly reliable a‐IGZO TFT backplane on polyimide film. The polyimide film coating process is compatible with mass‐production lines. We believe that flexible organic light‐emitting diode displays can be mass produced using a‐IGZO TFT backplane on polyimide films.
We have reduced threshold voltage shift of IGZO TFTs processed at 200°C under bias-temperature stress of V g = 20 V at 70°C for 2000 s to 0.22 V by optimizing IGZO deposition and annealing conditions. A flexible AMOLED display with integrated gate driver circuits has been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.