Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.
Rexeed was developed by Asahi Kasei Medical using wave-shaped hollow fibers, a full baffle, and a short taper housing to improve dialysate flow. The present study is clarifies improvement in dialysate flow with Rexeed-15 compared with that of a conventional dialyzer. Dialysate flow was evaluated by the pulse-response method. Dialysate pressure and tracer concentration were measured at a blood-side flow rate (QBeta) of 200 ml/min, a dialysate-side flow rate (QD) of 500 ml/min, and a net filtration rate (QF) of 0 ml/min using needles placed in the test dialyzer. Dialyzer performance was evaluated by measuring urea and vitamin B12 clearance at QB = 200 and 400 ml/min, QD = 300-800 ml/min, and QF = 0 ml/min. In the conventional dialyzer, dialysate channeling was observed. In contrast, Rexeed-15 had a uniform dialysate flow. Urea and vitamin B12 clearance with Rexeed-15 was slightly sensitive to QD. The overall mass transfer coefficient for urea with Rexeed-15 was more than 50% higher than that of the conventional dialyzer, indicating the possibility of reduced dialysate usage with Rexeed. Rexeed has a highly optimal dialysate flow, due to the wave-shaped hollow fibers and the new housing, and gives increased clearance for lower-molecular-weight substances.
For efficient removal of large molecular weight solutes by dialysis, several types of internal filtration-enhancing dialyzers (IFEDs) are commercially available. However, in a pressure-driven membrane separation process (i.e., filtration), membrane fouling caused by adhesion of plasma proteins is a severe problem. The objective of the present study is to investigate the effects of internal filtration on membrane fouling based on the membrane's pure-water permeability, diffusive permeability, and sieving coefficient. Hemodialysis experiments were performed with two different dialyzers, IFEDs and non-IFEDs. Local membrane fouling in each dialyzer was evaluated by measuring the pure-water permeability, the diffusive permeability, and the sieving coefficient of native membranes and membranes treated with bovine blood. The effects of packing ratio on dialysate flow pattern were also evaluated by measuring the time required for an ion tracer to reach electrodes placed in the dialyzers. In the IFED, membrane fouling caused by protein adhesion is increased because of enhanced internal filtration only at the early stage of dialysis, and this fouling tends to occur only near the dialysate outlet port. However, enhanced internal filtration has little effect on measured membrane transfer parameters.
ABSTRACT:The new biocompatible cellulosic membrane (AM-BC-F[AM-BIO-HX], Asahi-Medical Co. Ltd., Tokyo, Japan) has been developed, which has a higher flux than conventional membranes and more excellent antithrombogenicity because of its smoother membrane surface. The roughness of the inner surface of the AM-BC-F membrane was smaller than that of conventional membranes, as observed by Atomic Force Microscopy, because it was produced by the newly developed spinning method of cuprammonium cellulose solution, which has a different composition from that of a conventional cuprammonium cellulose solution. The degree of platelet adhesion (number of platelets adhered) on the membrane surface was evaluated in vitro by the measurement of the amount of the LDH released from the adhered platelets on the membrane surface after contact with fresh blood of Japanese male white rabbits weighing 2.5-3.0 kg. The number of platelets adhered of AM-BC-F was far smaller than that of conventional membranes. It was deduced from the smoother surface of the membrane. It can be expected that AM-BC-F will have an excellent antithrombogenicity on a dynamic state during actual dialysis treatments, because it is considered that the shearing stress of blood on the inner surface and the interaction between platelets and the membrane surface are less than that of conventional membrane2s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.