Various type of soils have been identified based on their electrical and magnetic properties, especially with regards to peat soils. Peat soils are commonly considered as partly decomposed vegetation. In this study, electrical and magnetic properties have been used in K-means clustering to identify layers of peat soils. K-means clustering is a partitioning method that treats observations in the data. Data cores were obtained at every centimeter and examined for their electrical conductivity (σ) and magnetic susceptibility (χm) properties. A 291 cm core was obtained at Tegal Arum Village in South Kalimantan, Indonesia. The K-means clustering results indicate two different layers at 148 cm, and this is supported by loss on ignition (LOI) measurements. In the first layers, a 87.65% LOI was found associated with peat soils (above 248 cm). Whereas, in the second layers, there was a 26.11% LOI associated with mineral soils (below 248 cm). The results of this study using K-means clustering can be used to delineate soil layers.
Riset ilmiah ini dilakukan untuk mengetahui bagaimana hubungan pemasaran digital, persepsi kualitas, dan citra merek terhadap keputusan pembelian sepatu lokal di marketplace. Pada penelitian ini menggunakan metode survei menggunakan kuesioner terhadap 111 orang responden yang pernah membeli sepatu lokal di marketplace Shopee dan atau tokopedia. Metode yang dilakukan untuk menguji hipotesis pada penelitian ini ialah regresi linear berganda, uji t, uji F dan uji koefisien determinasi. Hasil analisis dari penelitian ini dapat disimpulkan bahwa terdapat hubungan positif dan signifikan variabel pemasaran digital, persepsi kualitas, dan citra merek terhadap keputusan pembelian sepatu lokal di marketplace secara parsial maupun simultan. Hasil menunjukkan nilai adjusted R Square sebesar 0.496 hal ini berarti variabel pemasaran digital, pesepsi kualitas, dan citra merek 49.6% mempengaruhi keputusan pembelian sepatu lokal di marketplace dan selebihnya sebesar 50.4% berasal dari variabel independen lain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.