Current influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine. Layered nanoparticles are fabricated by desolvating tetrameric M2e into protein nanoparticle cores and coating these cores by crosslinking headless HAs. Representative headless HAs of two HA phylogenetic groups are constructed and purified. Vaccinations with the resulting protein nanoparticles in mice induces robust long-lasting immunity, fully protecting the mice against challenges by divergent influenza A viruses of the same group or both groups. The results demonstrate the importance of incorporating both structure-stabilized HA stalk domains and M2e into a universal influenza vaccine to improve its protective potency and breadth. These potent disassemblable protein nanoparticles indicate a wide application in protein drug delivery and controlled release.
Recurring influenza viruses pose an annual threat to public health. A time-saving, cost-effective and egg-independent influenza vaccine approach is important particularly when responding to an emerging pandemic. We fabricated coated, two-layer protein nanoclusters from recombinant trimeric hemagglutinin from an avian-origin H7N9 influenza A virus as an approach for vaccine development in response to an emerging pandemic. Assessment of the virus-specific immune responses and protective efficacy in mice immunized with the nanoclusters demonstrated that the vaccine candidates were highly immunogenic, able to induce protective immunity and long-lasting humoral antibody responses to this virus without the use of adjuvants. Because the advantages of the highly immunogenic coated nanoclusters also include rapid productions in an egg-independent system, this approach has great potential for influenza vaccine production not only in response to an emerging pandemic, but also as a replacement for conventional seasonal influenza vaccines.
Chemokines are an extensive family of small proteins which, in conjunction with their receptors, guide the chemotactic activity of various immune cells throughout the body. CCL28, β- or CC chemokine, is involved in the host immunity at various epithelial and mucosal linings. The unique roles of CCL28 in several facets of immune responses have attracted considerable attention and may represent a promising approach to combat various infections. CCL28 displays a broad spectrum of antimicrobial activity against gram-negative and gram-positive bacteria, as well as fungi. Here, we will summarize various research findings regarding the antimicrobial activity of CCL28 and the relevant mechanisms behind it. We will explore how the structure of CCL28 is involved with this activity and how this function may have evolved. CCL28 displays strong homing capabilities for B and T cells at several mucosal and epithelial sites, and orchestrates the trafficking and functioning of lymphocytes. The chemotactic and immunomodulatory features of CCL28 through the interactions with its chemokine receptors, CCR10 and CCR3, will also be discussed in detail. Thus, in this review, we emphasize the dual properties of CCL28 and suggest its role as an anchoring point bridging the innate and adaptive immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.