Standard treatment for HIV infection involves a combination of antiretrovirals. Additionally, opportunistic infections in HIV infected patients require further antimicrobial medications that might cause drug-drug interactions (DDIs). The objective of this study was to to compare the recognition of DDIs between antiretrovirals and antimicrobials by three proprietary databases and evaluate their concordance. 114 items of antiretrovirals and antimicrobials from the National List of Essential Medicines of Thailand 2018 were used in the study. However, 21 items were not recognised by Micromedex, Drugs.com, and Liverpool HIV interactions. Only 93 items were available for the detection of potential DDIs by the three databases. Potential DDIs detected from the three databases included 292 pairs. Liverpool showed the highest number of DDIs with 285 pairs compared with 259 pairs by drugs.com and 133 pairs by Micromedex. Regarding the severity classifications, Liverpool reported 10% Contraindicated; Micromedex reported 14% contraindicated and 59% major; Drugs.com reported 21% major. The Fleiss’ kappa agreements were fair to poor among the three databases, higher agreement was observed for DDIs classified as severe. This study highlights the need to harmonize the evaluation and interpretation of DDI risk in order to produce standardized information to support prescribers.
Background
The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems.
Aim of Study
In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo.
Materials and Methods
The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A.
Results
All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE
2
and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals.
Conclusion
Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.