BackgroundNecrotic enteritis (NE), caused by Clostridium perfringens, has cost the poultry industry $2 billion in losses. This study aimed to investigate the effect of Bacillus licheniformis as dietary supplement on the growth, serum antioxidant status, and expression of lipid-metabolism genes of broiler chickens with C. perfringens-induced NE.MethodsA total of 240 one-day-old broilers were randomly grouped into four: a negative control, an NE experimental model (PC), chickens fed a diet supplemented with 30 % of fishmeal from day 14 onwards and challenged with coccidiosis vaccine (FC), and NE group supplied with feed containing 1.0 × 106 CFU/g B. licheniformis (BL).ResultsBody weight gain, feed conversion ratio, serum antioxidant status, and lipid-metabolism-gene expression were analyzed. In the PC group, FCR increased significantly whereas serum catalase and glutathione peroxidase activity decreased compared with NC group. Dietary B. licheniformis supplementation improved FCR and oxidative stress in experimental avian NE. Using Bacillus licheniformis as a direct-fed microbial (DFM) could also significantly upregulate catabolism-related genes, namely, peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1, in livers and changed the expression of lipid-anabolism genes.ConclusionThese results suggested that dietary B. licheniformis supplementation can enhance growth and antioxidant ability, as well as change the expression of genes related to fatty-acid synthesis and oxidation in the livers of NE-infected broilers.
Lung tissue plays an important role in the respiratory system of mammals after birth. Early lung development includes six key stages, of which the saccular stage spans the pre- and neonatal periods and prepares the distal lung for alveolarization and gas-exchange. However, little is known about the changes in gene expression between fetal and neonatal lungs. In this study, we performed transcriptomic analysis of messenger RNA (mRNA) and long noncoding RNA (lncRNA) expressed in the lung tissue of fetal and neonatal piglets. A total of 19,310 lncRNAs and 14,579 mRNAs were identified and substantially expressed. Furthermore, 3248 mRNAs were significantly (FDR-adjusted p value ≤ 0.05, FDR: False Discovery Rate) differentially expressed and were mainly enriched in categories related to cell proliferation, immune response, hypoxia response, and mitochondrial activation. For example, CCNA2, an important gene involved in the cell cycle and DNA replication, was upregulated in neonatal lungs. We also identified 452 significantly (FDR-adjusted p value ≤ 0.05) differentially expressed lncRNAs, which might function in cell proliferation, mitochondrial activation, and immune response, similar to the differentially expressed mRNAs. These results suggest that differentially expressed mRNAs and lncRNAs might co-regulate lung development in early postnatal pigs. Notably, the TU64359 lncRNA might promote distal lung development by up-regulating the heparin-binding epidermal growth factor-like (HB-EGF) expression. Our research provides basic lung development datasets and will accelerate clinical researches of newborn lung diseases with pig models.
Lagovirus europaeus GI.1 belongs to Lagovirus in the Caliciviridae family. GI.1 causes an acute, septic, and highly lethal disease in rabbits. Lagovirus europaeus GI.2, a new variant of GI.1, has caused explosive mortality in rabbits of all ages in Sichuan Province, China. To explore the differences in pathogenicity of rabbits infected with GI.1/GI.2, we investigated the virulence and disease progression of a naturally occurring GI.1/GI.2 in 4-week-old, 13-week-old, and 25-week-old New Zealand White laboratory rabbits after GI.1/GI.2 infection. Objective measures of disease progression were recorded using continuous body-temperature monitoring. We observed the kittens were infected with GI.2 during the most urgent course of the disease, and GI.1 was not lethal to kittens. We found that the target organ of both GI.1 and GI.2 was the liver, but the disease course of the two viruses was differed. Our study enriches the research on the pathogenicity of GI.1 and GI.2 under the same conditions.
Introduction In May 2020, an outbreak of rabbit haemorrhagic disease 2 (RHD2) caused by the rabbit haemorrhagic disease virus 2 (RHDV2, GI.2) occurred in Sichuan, China. The acute onset and short disease course resulted in rabbit mortality as high as 42.86%. Currently, basic research on the aetiology and genetic characteristics of GI.2 is lacking in China. Material and Methods Pathological changes in various tissues from infected rabbits were investigated and the viral genome was characterised. This study used RT-PCR, histopathology and scanning electron microscopy to identify the pathogen in samples from infected rabbits that had died. Phylogenetic trees were constructed based on whole genome sequence analysis, and recombination events were analysed. Results RT-PCR identified the presence of GI.2. Histopathology revealed liver cell necrosis and haemorrhaging into lung alveoli. Electron microscopy demonstrated spherical GI.2 particles that were 40 nm in size. The gene sequence length of the isolate was 7,445 bp (GenBank accession number MW178244). A phylogenetic analysis based on the genome of the isolated strain and 60 reference strains showed that the isolate was grouped together with GI.2 strain MT586027.1 in a relatively independent sub-branch. The results of the recombination analysis showed that the strain was recombined from the MT586027.1 (major parent) and MN90145.1 (minor parent) strains, and recombination breakpoints were at locations in the 2858–5137 nt range. Conclusion The results of this study extend our understanding of the molecular epidemiology of GI.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.