In this work, a TiN/HfO2/ITO memory device is fabricated, which shows stable bipolar resistive switching behavior, as well as excellent data retention and good endurance. Moreover, a very low SET voltage of 0.2 V is achieved with a self-compliance current effect. The result brings about an obvious reduction in SET power to 160 µW, which is crucial for future high-density resistive switching memories. On the basis of the conducting filament theory, a possible resistive mechanism is discussed to explain the low SET voltage and self-compliance current phenomenon.
We prepared bilayer HfO 2 /TiO 2 resistive random accessory memory (RRAM) using magnetron sputtering on an ITO/PEN flexible substrate. The switching voltages (V SET and V RESET ) were smaller for the Pt/HfO 2 /TiO 2 /ITO device than for a Pt/HfO 2 /ITO memory device. The insertion of a TiO 2 layer in the switching layer was inferred to act as an oxygen reservoir to reduce the switching voltages. In addition, greatly improved uniformity was achieved, which showed the coefficient of the variations of V SET and V RESET to be 9.90% and 6.35% for the bilayer structure RRAM. We deduced that occurrence of conductive filament connection/rupture at the interface of the HfO 2 and TiO 2 , in combination with the HfO 2 acting as a virtual cathode, led to the improved uniformity. A multilevel storage capability can be obtained by varying the stop voltage in the RESET process for bilayer HfO 2 /TiO 2 RRAM. By analyzing the current conduction mechanism, we demonstrated that the multilevel high resistance state (HRS) was attributable to the increased barrier height when the stop voltage was increased.
The improved dielectric properties and voltage‐current nonlinearity of nickel‐doped CaCu3Ti4O12 (CCNTO) ceramics prepared by solid‐state reaction were investigated. The approach of A′‐site Ni doping resulted in improved dielectric properties in the CaCu3Ti4O12 (CCTO) system, with a dielectric constant ε′≈1.51×105 and dielectric loss tanδ≈0.051 found for the sample with a Ni doping of 20% (CCNTO20) at room temperature and 1 kHz. The X‐ray photoelectron spectroscopy (XPS) analysis of the CCTO and the specimen with a Ni doping of 25% (CCNTO25) verified the co‐existence of Cu+/Cu2+ and Ti3+/Ti4+. A steady increase in ε′(f) and a slight increase in α observed upon initial Ni doping were ascribed to a more Cu‐rich phase in the intergranular phase caused by the Ni substitution in the grains. The low‐frequency relaxation leading to a distinct enhancement in ε′(f) beginning with CCNTO25 was confirmed to be a Maxwell‐Wagner‐type relaxation strongly affected by the Ni‐related phase with the formation of a core‐shell structure. The decrease of the dielectric loss was associated with the promoted densification of CCNTO and the increase of Cu vacancies, due to Ni doping on the Cu sites. In addition, the Ni dopant had a certain effect on tuning the current‐voltage characteristics of the CCTO ceramics. The present A′‐site Ni doping experiments demonstrate the extrinsic effect underlying the giant dielectric constant and provides a promising approach for developing practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.