Molecular evolution based on mutagenesis is widely used in protein engineering. However, optimal proteins are often difficult to obtain due to a large sequence space. Here, we propose a novel approach that combines molecular evolution with machine learning. In this approach, we conduct two rounds of mutagenesis where an initial library of protein variants is used to train a machine-learning model to guide mutagenesis for the second-round library. This enables us to prepare a small library suited for screening experiments with high enrichment of functional proteins. We demonstrated a proof-of-concept of our approach by altering the reference green fluorescent protein (GFP) so that its fluorescence is changed into yellow. We successfully obtained a number of proteins showing yellow fluorescence, 12 of which had longer wavelengths than the reference yellow fluorescent protein (YFP). These results show the potential of our approach as a powerful method for directed evolution of fluorescent proteins.
Here we report the enzymatic synthesis of gold nanoparticles (Au NPs) by an engineered Escherichia coli harboring an NADH cofactor regeneration system coupled with glycerol dehydrogenase, which can be triggered by the addition of exogenous glycerol.
We report a one-pot biological approach to fabricate gold nanoparticle (AuNP)-ZZ domain conjugates using peptide-functionalized proteins that can simultaneously direct both biomineralization and surface modification of AuNPs. In addition, immuno-AuNPs are readily prepared through the specific binding of antibodies to the ZZ domain on the AuNPs.
Here, we report a new approach for the biofabrication of protein-immobilized gold nanoparticles (Au NPs), using oxidoreductase with gold-binding peptide-tagged recombinant proteins. The reduction of Au ions to Au(0) was achieved using a natural electron-donating cofactor, nicotinamide adenine dinucleotide, which was regenerated by the glycerol dehydrogenase (GLD) enzyme. First, we selected the A3 peptide (AYSSGAPPMPPF) as a gold binding moiety. The A3 peptide was introduced to the C-terminus of fusion proteins of immunoglobulin G (IgG)-binding domains of protein G and protein A. In the presence of the recombinant protein, the GLD-catalyzed cofactor reduction resulted in the efficient in situ fabrication of Au NPs immobilized with the fusion protein. Moreover, the protein-immobilized Au NPs were shown to have IgG binding activity. Although the A3 peptide had the ability to stabilize Au NPs, the results suggested that its binding affinity for Au NPs was unexpectedly weaker than that of His-tag. A cysteine residue was thus introduced to a recombinant protein adjacent to the A3 peptide. Finally, an artificial peptide, comprising A3 sequence with the C-terminal single cysteine residue, enabled the stable display of a fusion protein while maintaining its IgG binding activity through the Au-S bond. This enzyme-assisted one-pot methodology for protein-Au NPs conjugation offers one potent route for the facile fabrication of biomolecule-decorated metal NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.