The effects of variable valve timing and lift are studied in order to improve the thermal efficiency of a diesel engine, while maintaining low emission levels. At high load conditions, early closing of one of the intake valves or early intake valve opening realizes an enhancement of swirl intensity without increased pumping losses, and retarded intake valve closing reduces the effective compression ratio, both of which result in an increased exhaust gas recirculation ratio and an advanced fuel injection timing. Consequently low NO x formation and an improved thermal efficiency can be achieved simultaneously. At low load conditions, the injected fuel is dispersed in the cylinder by air swirl because of the small fuel quantity, and the increased effective compression ratio achieved by the early intake valve closing becomes effective at reducing hydrocarbon emissions. It is confirmed that the variable valve timing and lift system introduced in this research can flexibly change the engine parameters that govern engine combustion at various engine operating conditions. As a result, a 40 per cent reduction of engine-out NO x emissions and 4 per cent improvement of fuel consumption in the New European Driving Cycle (NEDC) are achieved. Furthermore, low-end torque could be increased by 40 per cent, utilizing exhaust pressure pulsation by matching of exhaust valve opening timing, and the overlap of intake and exhaust valve opening around top dead centre in the intake stroke. To enhance these benefits a new piston chamber with deep valve pockets is developed and its effect is investigated.
Cooling heat loss is one of the most dominant losses among the various engine losses to be reduced. Although many attempts to reduce it by insulating the combustion chamber wall have been carried out, most of them have not been successful. Charge air heating by the constantly high temperature insulating wall is a significant issue, because it deteriorates charging efficiency, increases the emissions of soot and NOx in diesel engines, and promotes the knock occurrence tendency in gasoline engines. A new concept heat insulation methodology which can reduce cooling heat loss without heating the charging air has been developed. Surface temperature of insulation coating on the combustion chamber wall changes rapidly, according to the quickly changing in-cylinder gas temperature in each engine stroke. During the compression and expansion stroke, the surface temperature of the insulation coating goes up rapidly, and consequently, the heat transfer becomes lower by the reduced temperature difference between the surface and the gas. During the intake stroke, the surface temperature goes down rapidly, and it prevents intake air heating from the wall. To realize the above-mentioned functionality, a thin coating layer with low thermal conductivity and low heat capacity was developed. It was applied on the pistons of diesel engines, and showed improvement in thermal efficiency. It also showed a reduction of unburnt fuel emission in low temperature engine starting condition. The energy balance analysis showed reduction of cooling heat loss and, on the contrary, increase in the brake power and the exhaust loss.
<div class="section abstract"><div class="htmlview paragraph">Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise. To model the effects of thermal stratification due to heat-transfer losses to the combustion-chamber walls, the initial temperature at the start of the CHEMKIN simulation was successively reduced below the adiabatic core temperature while observing changes in end-gas heat release and its effect on the reactant temperature.</div><div class="htmlview paragraph">The results reveal that knock-prone conditions generally exhibit an increased amount of heat release in the colder temperature zones, thus counteracting the HRR-smoothing effect of the naturally occurring thermal stratification. This detrimental effect becomes more pronounced for the low-S fuel due to its significant Negative Temperature Coefficient (NTC) autoignition characteristics. This explains the generally reduced effectiveness of dilution for the low-S fuel, and higher knock intensity for the cycles with autoignition.</div></div>
The purpose of this study is to make a numerical model that predicts the spray characteristics of a wall impingement injector. The film flow on the wall was analyzed theoretically using the laminar boundary-layer model. The biquadratic velocity profile was employed for the laminar boundary layer. The thickness of the liquid film on the wall was measured by an automatic thickness measurement system, which was newly developed for the present study and is based on the contact needle method. From the measurements, the film thickness decreased first toward the periphery, and then increased along the line that was perpendicular to the liquid injection direction. The theoretical analysis of the film thickness on the wall agreed well with the measurements. The sizes of the droplets from the newly developed wall impingement injector were predicted by using the proposed theoretical analysis of a film flow and the existing liquid-film breakup model. From the measurements from the phase Doppler particle analyzer, the mean droplet size decreased once toward the spray periphery and then increased. This trend of the droplet size was coincident to that of the liquid-film thickness at the edge of the wall. The mean droplet size decreased as the liquid injection pressure increased. The predictions of the droplet size agreed well with the measurements. NomenclatureA = constant defined by Eq. (10) a = radius of impinging liquid jet B = constant defined by Eq. (11) D = diameter of liquid injection nozzle d L = liquid stem diameter d m = mean droplet diameter defined by Eq. (16) d 32 = Sauter mean diameter h = liquid-film thickness K = constant defined by Eq. (18) L = distance from stagnation point to solid wall edge Oh = Ohnesorge number P i = liquid injection pressure Q = liquid volume flow rate, = πa 2 U 0 Re = Reynolds number defined by Eq. (8) r= radial distance from stagnation point r φ0 = radial distance in φ direction from stagnation point to point where laminar boundary layer reaches to liquid film surface U = velocity of liquid-film surface U e = mean velocity of liquid film at solid wall edge U m = mean velocity of liquid film U 0 = impingement velocity of liquid jet u = velocity of liquid in radial direction w = space between jet center line and streamline passing stagnation point defined by Eq. (3) X = coordinate perpendicular to center line of spray in spray sheet (illustrated in Fig. 3)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.