The objective of the study was to test the hypothesis that platelet-rich plasma (PRP) enhances meniscal tissue regeneration in vitro and in vivo. In the in vitro study, monolayer meniscal cell cultures were prepared, and 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay and 5-bromo-2'-deoxyuridine assay were performed to assess proliferative behavior in the presence of PRP. Alcian blue assay was performed to assess extracellular matrix (ECM) synthesis. To detect the fibrocartilage-related messenger ribonucleic acid (mRNA) expressions, real-time polymerase chain reaction was performed. In the in vivo study, 1.5-mm-diameter full-thickness defects were created in the avascular region of rabbit meniscus. Gelatin hydrogel (GH) was used as the drug delivery system for PRP growth factors. The defects were filled as follows: Group A, GH with PRP; Group B, GH with platelet-poor plasma; Group C, GH only. Each group was evaluated histologically at 4, 8, and 12 weeks after surgery. PRP stimulated deoxyribonucleic acid synthesis and ECM synthesis (p<0.05). Meniscal cells cultured with PRP showed greater mRNA expression of biglycan and decorin (p<0.05). Histological findings showed that remnants of gelatin hydrogels existed at 4 weeks, indicating that the hydrogels could control release for approximately 4 weeks. Histological scoring of the defect sites at 12 weeks revealed significantly better meniscal repair in animals that received PRP with GH than in the other two groups. These findings suggest that PRP enhances the healing of meniscal defects.
Squamous cell carcinoma (SCC) is the main histological type of oral cancer. Its growth rate and incidence of metastasis to regional lymph nodes is influenced by various factors, including hypoxic conditions. We have previously reported that transcutaneous CO2 induces mitochondrial apoptosis and decreases lung metastasis by reoxygenating sarcoma cells. However, previous studies have not determined the sequential mechanism by which transcutaneous CO2 suppresses growth of epithelial tumors, including SCCs. Moreover, there is no report that transcutaneous CO2 suppresses lymphogenous metastasis using human cell lines xenografts. In this study, we examined the effects of transcutaneous CO2 on cancer apoptosis and lymphogenous metastasis using human SCC xenografts. Our results showed that transcutaneous CO2 affects expressions of PGC-1α and TFAM and protein levels of cleavage products of caspase-3, caspase-9 and PARP, which relatives mitochondrial apoptosis. They also showed that transcutaneous CO2 significantly inhibits SCC tumor growth and affects expressions of HIF-1α, VEGF, MMP-2 and MMP-9, which play essential roles in tumor angiogenesis, invasion and metastasis. In conclusion, transcutaneous CO2 suppressed tumor growth, increased mitochondrial apoptosis and decreased the number of lymph node metastasis in human SCC by decreasing intra-tumoral hypoxia and suppressing metastatic potential with no observable effect in vivo. Our findings indicate that transcutaneous CO2 could be a novel therapeutic tool for treating human SCC.
Purpose: The role of chemotherapy (CT) and radiotherapy (RT) for management of extraskeletal osteosarcoma (ESOS) remains controversial. We examined disease outcomes for ESOS patients and investigated the association between CT/RT with recurrence and survival. Patients and methods: Retrospective review at 25 international sarcoma centers identified patients ≥18 years old treated for ESOS from 1971 to 2016. Patient/tumour characteristics, treatment, local/systemic recurrence, and survival data were collected. Kaplan-Meier survival and Cox proportional-hazards regression and cumulative incidence competing risks analysis were performed. Results: 370 patients with localized ESOS treated definitively with surgery presented with mainly deep tumours (n = 294, 80%). 122 patients underwent surgical resection alone, 96 (26%) also received CT, 70 (19%) RT and 82 (22%) both adjuvants. Five-year survival for patients with localized ESOS was 56% (95% CI 51%-62%). Almost half of patients (n = 173, 47%) developed recurrence: local 9% (35/370), distant 28% (102/370) or both 10% (36/370). Considering death as a competing event, there was no significant difference in cumulative incidence of local or systemic recurrence between patients who received CT, RT, both or neither (local p = 0.50, systemic p = 0.69). Multiple regression Cox analysis showed a significant association between RT and decreased local recurrence (HR 0.46 [95% CI 0.26-0.80], p = 0.01). Conclusion: Although the use of RT significantly decreased local recurrences, CT did not decrease the risk of systemic recurrence, and neither CT, nor RT nor both were associated with improved survival in patients with localized ESOS. Our results do not support the use of CT; however, adjuvant RT demonstrates benefit in patients with locally resectable ESOS.
Surgical treatment for spinal metastases is associated with significant improvement in health state value. In orthopaedic surgery, an ICUR less than $50,000/QALY gained is considered acceptable cost-effectiveness. Our results indicate that surgical treatment could be cost-effective.
Mitochondria play an essential role in cellular energy metabolism and apoptosis. Previous studies have demonstrated that decreased mitochondrial biogenesis is associated with cancer progression. In mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) regulates the activities of multiple nuclear receptors and transcription factors involved in mitochondrial proliferation. Previously, we showed that overexpression of PGC-1α leads to mitochondrial proliferation and induces apoptosis in human malignant fibrous histiocytoma (MFH) cells in vitro. We also demonstrated that transcutaneous application of carbon dioxide (CO2) to rat skeletal muscle induces PGC-1α expression and causes an increase in mitochondrial proliferation. In this study, we utilized a murine model of human MFH to determine the effect of transcutaneous CO2 exposure on PGC-1α expression, mitochondrial proliferation and cellular apoptosis. PGC-1α expression was evaluated by quantitative real-time PCR, while mitochondrial proliferation was assessed by immunofluorescence staining and the relative copy number of mitochondrial DNA (mtDNA) was assessed by real-time PCR. Immunofluorescence staining and DNA fragmentation assays were used to examine mitochondrial apoptosis. We also evaluated the expression of mitochondrial apoptosis related proteins, such as caspases, cytochorome c and Bax, by immunoblot analysis. We show that transcutaneous application of CO2 induces PGC-1α expression, and increases mitochondrial proliferation and apoptosis of tumor cells, significantly reducing tumor volume. Proteins involved in the mitochondrial apoptotic cascade, including caspase 3 and caspase 9, were elevated in CO2 treated tumors compared to control. We also observed an enrichment of cytochrome c in the cytoplasmic fraction and Bax protein in the mitochondrial fraction of CO2 treated tumors, highlighting the involvement of mitochondria in apoptosis. These data indicate that transcutaneous application of CO2 may represent a novel therapeutic tool in the treatment of human MFH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.