Elevated CO2 has been reported to stimulate plant growth under nitrogen-sufficient conditions, but the effects of CO2 on growth in a constantly nitrogen-limited state, which is relevant to most natural habitats of plants, remain unclear. Here, we maintained Arabidopsis seedlings under such conditions by growing a mutant with reduced nitrate uptake activity on a medium containing nitrate as the sole nitrogen source. Under nitrogen-sufficient conditions (i.e. in the presence of ammonium), growth of shoots and roots of both the wild type (WT) and the mutant was increased approximately 2-fold by elevated CO2. Growth stimulation of shoots and roots by elevated CO2 was observed in the WT growing with nitrate as the sole nitrogen source, but in the mutant grown with nitrate, the high-CO2 conditions stimulated only the growth of roots. In the mutant, elevated CO2 caused well-known symptoms of nitrogen-starved plants, including decreased shoot/root ratio, reduced nitrate content and accumulation of anthocyanin, but also had an increased Chl content in the shoot, which was contradictory to the known effect of nitrogen depletion. A high-CO2-responsive change specific to the mutant was not observed in the levels of the major metabolites, although CO2 responses were observed in the WT and the mutant. These results indicated that elevated CO2 causes nitrogen limitation in the seedlings grown with a constantly limited supply of nitrogen, but the Chl content and the root biomass of the plant increase to enhance the activities of both photosynthesis and nitrogen uptake, while maintaining normal metabolism and response to high CO2.
The purpose of this study was to evaluate whether hard tissue might be formed on dentin surfaces applied with recombinant human bone morphogenetic protein-2 (rhBMP-2) in palatal connective tissue. Fifty-eight dentin blocks were prepared from rat roots, demineralized with 24% EDTA (pH 7.0), applied with 0, 50 and 100 microgram/ml rhBMP-2, and labeled as groups 0, 50 and 100. The dentin blocks were then transplanted into palatal connective tissue of rats, and specimens were prepared at two and four weeks after surgery for histologic and histomorphometric examinations. The results showed that the percentage of newly formed hard tissue in relation to the total dentin block surface length in groups 0, 50 and 100 was 0.0%, 2.8% and 4.4% at two weeks, and 0.0%, 1.6% and 12.8% at four weeks, respectively. New hard tissue formation in groups 50 and 100 was significantly promoted as compared to group 0 (p < 0.01). These findings thus indicate that rhBMP-2 application to dentin enhanced new hard tissue formation on dentin surfaces in the connective tissue of the palate.
In this study, we investigated the effect of type I collagen on dentin matrix protein-1 (Dmp-1) and osteocalcin (OCN) gene expression of dental pulp cells. The mRNA level of Dmp-1 gene was down-regulated; however, OCN gene expression was up-regulated by the culture of dental pulp cells with type I collagen. These findings imply that type I collagen regulates mRNA level of Dmp-1 and OCN gene that are predominantly expressed in active odontoblasts. The change of gene expression by type I collagen was suppressed by the blocking of collagen-integrin interaction. We could conclude that the effect of type I collagen was mediated via binding of collagen to integrin receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.