Mechanical metamaterials are usually designed to exhibit novel properties and functionalities that are rare or even unprecedented. What is common among most previous designs is the quasi-static nature of their mechanical behavior. Here, we introduce a previously unidentified class of strain rate-dependent mechanical metamaterials. The principal idea is to laterally attach two beams with very different levels of strain rate-dependencies to make them act as a single bi-beam. We use an analytical model and multiple computational models to explore the instability modes of such a bi-beam construct, demonstrating how different combinations of hyperelastic and viscoelastic properties of both beams, as well as purposefully introduced geometric imperfections, could be used to create robust and highly predictable strain rate-dependent behaviors of bi-beams. We then use the bi-beams to design and experimentally realize lattice structures with unique strain rate-dependent properties including switching between auxetic and conventional behaviors and negative viscoelasticity.
Shape-shifting materials are a powerful tool for the fabrication of reconfigurable materials. Upon activation, not only a change in their shape but also a large shift in their material properties can be realized. As compared with the 4D printing of 2D-to-3D shape-shifting materials, the 4D printing of reconfigurable (i.e., 3D-to-3D shape-shifting) materials remains challenging. That is caused by the intrinsically 2D nature of the layer-by-layer manner of fabrication, which limits the possible shape-shifting modes of 4D printed reconfigurable materials. Here, we present a single-step production method for the fabrication and programming of 3D-to-3D shape-changing materials, which requires nothing more than a simple modification of widely available fused deposition modeling (FDM) printers. This simple modification allows the printer to print on curved surfaces. We demonstrate how this modified printer can be combined with various design strategies to achieve high levels of complexity and versatility in the 3D-to-3D shape-shifting behavior of our reconfigurable materials and devices. We showcase the potential of the proposed approach for the fabrication of deployable medical devices including deployable bifurcation stents that are otherwise extremely challenging to create.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.