Metal nanoparticles are known to form highly conductive films upon heating below 200 °C. We study the mechanism and morphological changes that occur as 3 nm, thiolate encapsulated, silver nanoparticles are annealed to form conductive films. We use X-ray diffraction (XRD), grazing incidence X-ray scattering (GIXS), and transmission electron microscopy (TEM) to monitor structural changes in the film. We show that the surfactant is present during the entire sintering process, that its presence greatly influences the grain size and crystallite orientation of the resulting film, and that the film becomes fully conductive in the presence of the surfactant. We show that particles that aggregate more rapidly form films that consist of smaller crystallites and are less textured. We further show that digestive ripening can lead to the degeneration of films back into particles, particularly when annealing in air versus an inert environment. Coalescence contributes to crystallite growth when particles are small but can confound both crystallite size and orientation development in the later stages of growth. The interaction of the surfactant with the particle is weakened by moisture, lowering the temperature at which the surfactant disassociates from the particle and sintering begins. Moisture also increases the rate of both aggregation and digestion, drastically changing the morphology of the films at any given temperature.
Gold nanoparticle inks were investigated as a potential candidate for lead-free packaging applications. Inks consisted of surfactant-passivated nanoparticles dissolved in a solvent. Optimized gold inks are able to sinter at temperatures as low as 120°C and achieve conductivities of up to 70% of bulk. Once sintered, the metallic structure reverts to bulk-like properties and approaches bulk reliability and performance. Thus nanoparticle-based solders would operate at much lower homologous temperatures as compared with alloy-based solders. Nanoparticle inks under investigation were sintered at 180°C. The resulting material exhibited a resistivity of 5 lX cm, which is significantly lower than those of Pb-Sn and Sn-Ag-Cu. Electromigration studies were carried out and time to failure was investigated as a function of temperature. Electromigration activation energy was calculated through Black's equation to be 0.52 eV, which is consistent with surface/grain boundary diffusion. These studies suggest that nanoparticle-ink-based films show excellent robustness, due to their irreversible conversion to bulk-like materials. Nanoparticle inks are thus promising candidates for next-generation lead-free solders.
We report on a novel, air-stable, printable, transparent, NMOS semiconductor technology using soluble ZnO nanoparticles. We demonstrate solution-processed transistors with mobility > O.lcm'N.s, which is the highest solutionprocessed NMOS mobility reported to date. The air-stability and transparency make this device an ideal candidate for lowcost printed displays and CMOS circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.