Dietary fibers can be utilized to shape the human gut microbiota. However, the outcomes from most dietary fibers currently used as prebiotics are a result of competition between microbes with overlapping abilities to utilize these fibers. Thus, divergent fiber responses are observed across individuals harboring distinct microbial communities. Here, we propose that dietary fibers can be classified hierarchically according to their specificity toward gut microbes. Highly specific fibers harbor chemical and physical characteristics that allow them to be utilized by only a narrow group of bacteria within the gut, reducing competition for that substrate. The use of such fibers as prebiotics targeted to specific microbes would result in predictable shifts independent of the background microbial composition.
A systematic review and meta-analysis determined the effect of restaurant menu labeling on calories and nutrients chosen in laboratory and away-from-home settings in U.S. adults. Cochrane-based criteria adherent, peer-reviewed study designs conducted and published in the English language from 1950 to 2014 were collected in 2015, analyzed in 2016, and used to evaluate the effect of nutrition labeling on calories and nutrients ordered or consumed. Before and after menu labeling outcomes were used to determine weighted mean differences in calories, saturated fat, total fat, carbohydrate, and sodium ordered/consumed which were pooled across studies using random effects modeling. Stratified analysis for laboratory and away-from-home settings were also completed. Menu labeling resulted in no significant change in reported calories ordered/consumed in studies with full criteria adherence, nor the 14 studies analyzed with ≤1 unmet criteria, nor for change in total ordered carbohydrate, fat, and saturated fat (three studies) or ordered or consumed sodium (four studies). A significant reduction of 115.2 calories ordered/consumed in laboratory settings was determined when analyses were stratified by study setting. Menu labeling away-from-home did not result in change in quantity or quality, specifically for carbohydrates, total fat, saturated fat, or sodium, of calories consumed among U.S. adults.
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra. Recent evidence supports the involvement of the gastrointestinal tract in PD pathogenesis, including alterations in microbiota and intestinal permeability. Apart from being the preferred energy source for colonic epithelial cells, butyrate is involved in anti-inflammatory, enteroendocrine and epigenetic mechanisms that influence colonic and systemic health, including brain function. A few studies using oral administration of sodium butyrate indicate beneficial effects in PD animal models; however, prebiotic fibers that generate butyrate locally in the gut may be more effective. The design and selection of butyrogenic prebiotic fibers would allow preclinical studies to evaluate how gut-derived butyrate could affect PD pathophysiology. This review describes potential benefits of increasing gut butyrate production in PD through a prebiotic approach. Moreover, physico-chemical features of prebiotic fibers that target butyrogenic colonic bacteria are discussed.
In the face of interindividual variability and complexity of gut microbial communities, prediction of outcomes from a given fiber utilized by many microbes would require a sophisticated comprehension of all competitive interactions that occur in the gut. Results presented here suggest that high-specificity fibers potentially circumvent the competitive scope in the gut for fiber utilization, providing a promising path to targeted and predictable microbial shifts in different individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.