Inflammatory processes cause changes in the permeability of the blood brain barrier. Non-steroidal anti-inflammatory drugs (NSAID) are most commonly used to treat these inflammatory processes, including meloxicam, and they can reach the central nervous system (CNS) and cause neurotoxicity. Since there are no studies evaluating the neurotoxicity of NSAID in alternative models of toxicity, the aim of this study was to evaluate the acute neurotoxicity (through nematodes changes in behavior) of meloxicam in an alternative in vivo model, Caenorhabditis elegans, as well as, to determine meloxicam toxicity through LD50 and development assessments. Meloxicam LD50 was high (50.03 mg/mL) and only the highest dose (100 mg/mL) caused a decrease in the nematode body size, indicating low toxicity in this alternative model. Besides, a neurological effect was observed only in the highest dose. Meloxicam showed neurotoxicity only at a very high dose, suggesting low potential to cause toxicity in the CNS. However, further studies are necessary to evaluate meloxicam neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.