Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth.This article is categorized under:
The Internet of Things (IoT) envisions a world-wide, interconnected network of smart physical entities. These physical entities generate a large amount of data in operation and as the IoT gains momentum in terms of deployment, the combined scale of those data seems destined to continue to grow. Increasingly, applications for the IoT involve analytics. Data analytics is the process of deriving knowledge from data, generating value like actionable insights from them. This article reviews work in the IoT and big data analytics from the perspective of their utility in creating efficient, effective and innovative applications and services for a wide spectrum of domains. We review the broad vision for the IoT as it is shaped in various communities, examine the application of data analytics across IoT domains, provide a categorisation of analytic approaches and propose a layered taxonomy from IoT data to analytics. This taxonomy provides us with insights on the appropriateness of analytical techniques, which in turn shapes a survey of enabling technology and infrastructure for IoT analytics. Finally, we look at some tradeoffs for analytics in the IoT that can shape future research.
Depression detection is a significant issue for human well-being. In previous studies, online detection has proven effective in Twitter, enabling proactive care for depressed users. Owing to cultural differences, replicating the method to other social media platforms, such as Chinese Weibo, however, might lead to poor performance because of insufficient available labeled (self-reported depression) data for model training. In this paper, we study an interesting but challenging problem of enhancing detection in a certain target domain (e.g. Weibo) with ample Twitter data as the source domain. We first systematically analyze the depression-related feature patterns across domains and summarize two major detection challenges, namely isomerism and divergency. We further propose a cross-domain Deep Neural Network model with Feature Adaptive Transformation & Combination strategy (DNN-FATC) that transfers the relevant information across heterogeneous domains. Experiments demonstrate improved performance compared to existing heterogeneous transfer methods or training directly in the target domain (over 3.4% improvement in F1), indicating the potential of our model to enable depression detection via social media for more countries with different cultural settings.
The Open Science agenda holds that science advances faster when we can build on existing results. Therefore, research data must be FAIR (Findable, Accessible, Interoperable, and Reusable) in order to advance the findability, reproducibility and reuse of research results. Besides the research data, all the processing steps on these data – as basis of scientific publications – have to be available, too.For good scientific practice, the resulting research software should be both open and adhere to the FAIR principles to allow full repeatability, reproducibility, and reuse. As compared to research data, research software should be both archived for reproducibility and actively maintained for reusability.The FAIR data principles do not require openness, but research software should be open source software. Established open source software licenses provide sufficient licensing options, such that it should be the rare exception to keep research software closed.We review and analyze the current state in this area in order to give recommendations for making research software FAIR and open.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.