The effective management and exploitation of multimedia documents requires the extraction of the underlying semantics. Multimedia analysis algorithms can produce fairly rich, though imprecise information about a multimedia document which most of the times remains unexploited. In this paper we propose a methodology for semantic indexing and retrieval of images, based on techniques of image segmentation and classification combined with fuzzy reasoning. In the proposed knowledge-assisted analysis architecture a segmentation algorithm firstly generates a set of over-segmented regions. After that, a region classification process is employed to assign semantic labels using a confidence degree and simultaneously merge regions based on their semantic similarity. This information comprises the assertional component of a fuzzy knowledge base which is used for the refinement of mistakenly classified regions and also for the extraction of rich implicit knowledge used for global image classification. This knowledge about images is stored in a semantic repository permitting image retrieval and ranking.
Abstract. Semantic analysis of multimedia content is an on going research area that has gained a lot of attention over the last few years. Additionally, machine learning techniques are widely used for multimedia analysis with great success. This work presents a combined approach to semantic adaptation of neural network classifiers in multimedia framework. It is based on a fuzzy reasoning engine which is able to evaluate the outputs and the confidence levels of the neural network classifier, using a knowledge base. Improved image segmentation results are obtained, which are used for adaptation of the network classifier, further increasing its ability to provide accurate classification of the specific content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.