Sponges invariably filter a large volume of seawater and potentially accumulate heavy metals and other contaminants from the environment. Sponges, being sessile marine invertebrates and modular in body organization, can live many years in the same location and therefore have the capability to accumulate anthropogenic pollutants such as metals over a long period. Almost all marine sponges harbor large number of microorganisms within their tissues where they reside in the extra- and intra-cellular spaces. Bacteria in seawater have already been established as biological indicators of contamination. The present study was intended to find out the heavy metal resistance pattern of sponge-associated bacteria so as to develop suitable biological indicators. The bacteria associated with a marine sponge Fasciospongia cavernosa were evaluated as potential indicator organisms. The associated bacteria including Streptomyces sp. (MSI01), Salinobacter sp. (MSI06), Roseobacter sp. (MSI09), Pseudomonas sp. (MSI016), Vibrio sp. (MSI23), Micromonospora sp. (MSI28), Saccharomonospora sp. (MSI36) and Alteromonas sp. (MSI42) showed resistance against tested heavy metals. Based on the present findings, Cd and Hg emerged as the highly resistant heavy metal pollutants in the Gulf of Mannar biosphere reserve. Plasmids in varied numbers and molecular weights were found in all the isolates. Particularly the isolates MSI01 and MSI36 harbored as many as three plasmids each. The results envisaged that the plasmids might have carried the resistance factor. No correlation was observed in number of plasmids and level of resistance. The literature evidenced that the sponge-associated bacteria were seldom exploited for pollution monitoring though they have been extensively used for bioprospecting. In this background, the present findings come up with a new insight into the development of indicator models.
An endosymbiotic Pseudomonas sp. (MSI057), which could produce high yields of lipase, was isolated from marine sponge Dendrilla nigra, collected from the peninsular coast of India. Maximum production of enzyme was obtained in minimal medium supplemented with 1% tributyrin. Catabolite repression was observed when the medium was supplemented with readily available carbon sources. The optimum temperature and pH for the enzyme production was 30 degrees C and 9.0, respectively. The enzyme exhibited maximum activity in pH range of 8-9 with an optimum pH 9.0. The activity of purified enzyme was optimum at 37 degrees C and showed 80% activity at 20 degrees C and the enzyme activity decreased dramatically above 50 degrees C. Based on the present findings, the enzyme was characterized as psychrophilic alkaline lipase, which can be developed for industrial applications.
The incidence of Aeromonas hydrophila in freshly caught finfish and prawns from four major commercial fish landing sites of coastal South India was studied for a period of one year. Among 514 analysed samples of seafood (410 finfish and 104 prawn), 37% of them (37.3% of finfish and 35.6% of prawn) were contaminated with A. hydrophila. A total of 255 strains of A. hydrophila were isolated. Of the total isolates, about 78.4% of them were producers of haemolysin. All strains were resistant to bacitracin and all were sensitive to chloramphenicol. The results indicate that the strains originated from high-risk sources. The presence of A. hydrophila is an indication of marine contamination. The increasing presence of haemolysin-producing multiple drug-resistant A. hydrophila in fish and prawn may become a potential human health hazard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.