Bone tissue engineering is a complicated field requiring concerted participation of cells, scaffolds, and osteoactive molecules to replace damaged bone. This study synthesized a chitosan-based (CS) scaffold incorporated with trichostatin A (TSA), an epigenetic modifier molecule, to achieve promising bone regeneration potential. The scaffolds with various biphasic calcium phosphate (BCP) proportions: 0%, 10%, 20%, and 40% were fabricated. The addition of BCP improved the scaffolds’ mechanical properties and delayed the degradation rate, whereas 20% BCP scaffold matched the appropriate scaffold requirements. The proper concentration of TSA was also validated. Our developed scaffold released TSA and sustained them for up to three days. The scaffold with 800 nM of TSA showed excellent biocompatibility and induced robust osteoblast-related gene expression in the primary human periodontal ligament cells (hPDLCs). To evaluate in vivo bone regeneration potential, the scaffolds were implanted in the mice calvarial defect model. The excellent bone regeneration ability was further demonstrated in the micro-CT and histology sections compared to both negative control and commercial bone graft product. New bone formed in the CS/BCP/TSA group revealed a trabeculae-liked characteristic of the mature bone as early as six weeks. The CS/BCP/TSA scaffold is an up-and-coming candidate for the bone tissue engineering scaffold.
Objectives: To investigate tooth ultrastructure and mutation of two patients in a family affected with osteogenesis imperfecta (OI) type IV and dentinogenesis imperfecta (DGI).Methods: Mutations were detected by whole exome and Sanger sequencing. The permanent second molar obtained from the proband (DGI1) and the primary first molar from his affected son (DGI2) were studied for their color, roughness, mineral density, hardness, elastic modulus, mineral content, and ultrastructure, compared to the controls.Results: Two novel missense COL1A2 variants, c.752C > T (p.Ser251Phe) and c.758G > T (p.Gly253Val), were identified in both patients. The c.758G > T was predicted to be the causative mutation. Pulp cavities of DGI1 (permanent teeth) were obliterated while those of DGI2 (primary teeth) were wide. The patients' teeth had darker and redder colors; reduced dentin hardness; decreased, disorganized, and scattered dentinal tubules and collagen fibers; and irregular dentinoenamel junction (DEJ), compared to controls. Lacunae-like structures were present in DGI2.
Conclusions:We reported the novel causative mutation, c.758G > T (p.Gly253Val), in COL1A2 for OI type IV and DGI. The DGI dentin demonstrated inferior mechanical property and ultrastructure, suggesting severe disturbances of dentin formation.These could contribute to fragility and prone to infection of DGI teeth. This study expands phenotypic and genotypic spectra of COL1A2 mutations.
The aim of this study is to synthesize Titania nanotubes (TNTs) on the 3D-printed Ti-6Al-4V surface and investigate the loading of antibacterial vancomycin drug dose of 200 ppm for local drug treatment application for 24 h. The antibacterial drug release from synthesized nanotubes evaluated via the chemical surface measurement and the linear fitting of Korsmeyer–Peppas model was also assessed. The TNTs were synthesized on the Ti-6Al-4V surface through the anodization process at different anodization time. The TNTs morphology was characterized using field emission scanning electron microscope (FESEM). The wettability and the chemical composition of the Ti-6Al-4V surface and the TNTs were assessed using the contact angle meter, Fourier transform infrared spectrophotometer (FTIR) and the X-ray photoelectron spectroscopy (XPS). The vancomycin of 200 ppm release behavior under controlled atmosphere was measured by the high-performance liquid chromatography (HPLC) and hence, the position for retention time at 2.5 min was ascertained. The FESEM analysis confirmed the formation of nanostructured TNTs with vertically oriented, closely packed, smooth and unperforated walls. The maximum cumulative vancomycin release of 34.7% (69.5 ppm) was recorded at 24 h. The wetting angle of both Ti-6Al-4V implant and the TNTs were found below 90 degrees. This confirmed their excellent wettability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.