ABSTRACT:Glucuronidation is a listed clearance mechanism for 1 in 10 of the top 200 prescribed drugs. The objective of this article is to encourage those studying ligand interactions with UDP-glucuronosyltransferases (UGTs) to adequately consider the potential consequences of in vitro UGT inhibition in humans. Spurred on by interest in developing potent and selective inhibitors for improved confidence around UGT reaction phenotyping, and the increased availability of recombinant forms of human UGTs, several recent studies have reported in vitro inhibition of UGT enzymes. In some cases, the observed potency of UGT inhibitors in vitro has been interpreted as having potential relevance in humans via pharmacokinetic drug-drug interactions. Although there are reported examples of clinically relevant drug-drug interactions for UGT substrates, exposure increases of the aglycone are rarely greater than 100% in the presence of an inhibitor relative to its absence (i.e., AUC i /AUC <2). This small magnitude in change is in contrast to drugs primarily cleared by cytochrome P450 enzymes, where exposures have been reported to increase as much as 35-fold on coadministration with an inhibitor (e.g., ketoconazole inhibition of CYP3A4-catalyzed terfenadine metabolism). In this article the evidence for purported clinical relevance of potent in vitro inhibition of UGT enzymes will be assessed, taking the following into account: in vitro data on the enzymology of glucuronide formation from aglycone, pharmacokinetic principles based on empirical data for inhibition of metabolism, and clinical data on the pharmacokinetic drug-drug interactions of drugs primarily cleared by glucuronidation.
ABSTRACT:Apixaban is an oral, direct, and highly selective factor Xa inhibitor in late-stage clinical development for the prevention and treatment of thromboembolic diseases. The metabolic drug-drug interaction potential of apixaban was evaluated in vitro. The compound did not show cytochrome P450 inhibition (IC 50 values >20 M) in incubations of human liver microsomes with the probe substrates of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4/5. Apixaban did not show any effect at concentrations up to 20 M on enzyme activities or mRNA levels of selected P450 enzymes (CYP1A2, 2B6, and 3A4/5) that are sensitive to induction in incubations with primary human hepatocytes. Apixaban showed a slow metabolic turnover in incubations of human liver microsomes with formation of O-demethylation (M2) and hydroxylation products (M4 and M7) as prominent in vitro metabolites. Experiments with human cDNA-expressed P450 enzymes and P450 chemical inhibitors and correlation with P450 activities in individual human liver microsomes demonstrated that the oxidative metabolism of apixaban for formation of all metabolites was predominantly catalyzed by CYP3A4/5 with a minor contribution of CYP1A2 and CYP2J2 for formation of M2. The contribution of CYP2C8, 2C9, and 2C19 to metabolism of apixaban was less significant. In addition, a human absorption, distribution, metabolism, and excretion study showed that more than half of the dose was excreted as unchanged parent (f m CYP <0.5), thus significantly reducing the overall metabolic drug-drug interaction potential of apixaban. Together with a low clinical efficacious concentration and multiple clearance pathways, these results demonstrate that the metabolic drug-drug interaction potential between apixaban and coadministered drugs is low.Apixaban (Fig. 1), a novel and highly selective inhibitor of factor Xa (Luettgen et al., 2006;Pinto et al., 2007;Wong et al., 2008), is under development for the treatment and prevention of thromboembolic disorders, prevention of stroke in patients with atrial fibrillation, and secondary prevention in patients with acute coronary syndromes (APPRAISE Steering Committee and Investigators, 2009). In addition to demonstrating high oral availability (Frost et al., 2007), clinical studies of apixiban have shown prevention of venous thromboembolic events in patients after knee replacement surgery (Lassen et al., 2007). Apixaban is efficacious and well tolerated in the treatment of patients with acute symptomatic deep vein thrombosis (Buller et al., 2008). After oral administration, apixaban was slowly metabolized and thus was mostly unchanged in the circulation although apixaban was metabolized by multiple pathways in animals and humans (Zhang et al., , 2010. The primary metabolic pathways of apixaban in humans included O-demethylation (M2) and hydroxylation (M4 and M7). M2 was further conjugated by sulfation to form a sulfate metabolite (M1) Wang et al., 2009). Other metabolites (M3, M5, and M6) previously identified as minor metabolites in animals and humans were als...
ABSTRACT:Silybin, a major constituent of the milk thistle, is used to treat several liver disorders. Silybin inactivated purified, recombinant cytochromes P450 (P450) 3A4 and 2C9 in a mechanism-based manner. The inactivations were time-, concentration-, and NADPHdependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl-)coumarin O-debenzylation activity (P450 3A4) was characterized by a K I of 32 M, a k inact of 0.06 min ؊1 , and a t 1/2 of 14 min.Testosterone metabolism to 6--hydroxytestosterone (P450 3A4) was also inactivated with a K I of 166 M, a k inact of 0.08 min ؊1, and a t 1/2 of 9 min. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified human P450 2C9 was inactivated with a K I of 5 M, a k inact of 0.14 min ؊1, and a t 1/2 of 7 min. Parallel loss of heme was observed with both P450s. Activity of both P450 enzymes was not recovered after removal of silybin either by dialysis or by spin gel filtration. In addition, silybin inhibited the glucuronidation of 7-hydroxy-4-trifluoromethylcoumarin catalyzed by recombinant hepatic UDP-glucuronosyltransferases (UGTs) 1A1, 1A6, 1A9, 2B7, and 2B15, with IC 50 values of 1.4 M, 28 M, 20 M, 92 M, and 75 M, respectively. Silybin was a potent inhibitor of UGT1A1 and was 14-and 20-fold more selective for UGT1A1 than for UGT1A9 and UGT1A6, respectively. Thus, careful administration of silybin with drugs primarily cleared by P450s 3A4 or 2C9 is advised, since drug-drug interactions cannot be excluded. The clinical significance of in vitro UGT1A1 inhibition is unknown.
Targeted quantitative proteomics using heavy isotope dilution techniques is increasingly being utilized to quantify proteins, including UGT enzymes, in biological matrices. Here we present a multiplexed method using nanoLC-MS/MS and multiple reaction monitoring (MRM) to quantify 14 UGT1As and UGT2Bs in liver matrices. Where feasible, we employ two or more proteotypic peptides per protein, with only four proteins quantified with only one proteotypic peptide. We apply the method to analysis of a library of 60 human liver microsome (HLM) and matching S9 samples. Ten of the UGT isoforms could be detected in liver, and the expression of each was consistent with mRNA expression reported in the literature. UGT2B17 was unusual in that ∼30% of liver microsomes had no or little (<0.5 pmol/mg protein) content, consistent with a known common polymorphism. Liver S9 UGT concentrations were approximately 10-15% those of microsomes. The method was robust, precise, and reproducible and provides novel UGT expression data in human liver that will benefit rational approaches to evaluate metabolism in drug development.
PBPK model of pravastatin, based on in vitro transport parameters and scaling factors, was developed. The approach described can be used to predict the pharmacokinetics and DDIs associated with hepatic uptake transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.