Cellulose from Asparagus officinalis stalk end was extracted and synthesized to carboxymethyl cellulose (CMCas) using monochloroacetic acid (MCA) via carboxymethylation reaction with various sodium hydroxide (NaOH) concentrations starting from 20% to 60%. The cellulose and CMCas were characterized by the physical properties, Fourier Transform Infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, mechanical properties of CMCas films were also investigated. The optimum condition for producing CMCas was found to be 30% of NaOH concentration for the carboxymethylation reaction, which provided the highest percent yield of CMCas at 44.04% with the highest degree of substitution (DS) at 0.98. The melting point of CMCas decreased with increasing NaOH concentrations. Crystallinity of CMCas was significantly deformed (p < 0.05) after synthesis at a high concentration. The L* value of the CMCas was significantly lower at a high NaOH concentration compared to the cellulose. The highest tensile strength (44.59 MPa) was found in CMCas film synthesized with 40% of NaOH concentration and the highest percent elongation at break (24.99%) was obtained in CMCas film treated with 30% of NaOH concentration. The applications of asparagus stalk end are as biomaterials in drug delivery system, tissue engineering, coating, and food packaging.
This study aimed at developing the functional packaging properties of pectin/alginate films by adding zinc oxide nanoparticles (ZnO-NPs). The ZnO-NPs were added to the pectin/alginate film at the concentrations of 0.5, 2.5, 5, and 25 g/100 g of blended polymer. The effects of the ZnO-NP incorporation on the mechanical properties, hydration properties, oxygen permeability, ultraviolet transmission, transparency, and antimicrobial activity of the films were investigated. The addition of ZnO-NPs from 0 to 5 g/100 g of blended polymer to the pectin/alginate film increased 191.4% of the tensile strength, 169.8% of elongation at break, and antimicrobial properties (against Aspergillus niger, Colletotrichum gloeosporioides, Escherichia coli, and Saccharomyces cerevisiae). In contrast, it reduced the solubility from 30.38% to 22.49%, water vapor permeability from 1.01 × 10−14 to 0.414 × 10−14 kg·m/m2·Pa·s, moisture absorption, ultraviolet light transmission, and oxygen permeability from 270.86 × 10−19 to 110.79 × 10−19 kg·m/m2·Pa·s. The effects are the highest when the concentration of the ZnO-NPs in the film was 5 g/100 g of blended polymer. Attenuated total reflectance-Fourier transform infrared analysis indicated that some interactions between the ZnO-NPs and pectin/alginate matrices were formed. These results suggest that pectin/alginate/ZnO-NPs films can be used as active packaging for food preservation.
This study was aimed at creating new films and determine some functional packaging properties of pectin:nanochitosan films with ratios of pectin:nanochitosan (P:NSC) of 100:0; 75:25; 50:50; 25:75 and 0:100 (%w/w). The effects of the proportions of pectin:nanochitosan incorporation on the thickness, mechanical properties, water vapor permeability, water-solubility, and oxygen permeability were investigated. The microstructural studies were done using scanning electron microscopy (SEM). The interactions between pectin and nanochitosan were elucidated by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results showed that the blending of pectin with nanochitosan at proportions of 50:50 increased the tensile strength to 8.96 MPa, reduced the water solubility to 37.5%, water vapor permeability to 0.2052 g·mm/m2·day·kPa, and the oxygen permeability to 47.67 cc·mm/m2·day. The results of the contact angle test indicated that P:NCS films were hydrophobic, especially, pectin:nanochitosan films inhibited the growth of Colletotrichum gloeosporioides, Saccharomyces cerevisiae, Aspergillus niger, and Escherichia coli. So, P:NCS films with a proportion of 50:50 can be used as active films to extend the shelf life of food.
Bacterial cellulose from nata de coco was prepared from the fermentation of coconut juice with Acetobacter xylinum for 10 days at room temperature under sterile conditions. Carboxymethyl cellulose (CMC) was transformed from the bacterial cellulose from the nata de coco by carboxymethylation using different concentrations of sodium hydroxide (NaOH) and monochloroacetic acid (MCA) in an isopropyl (IPA) medium. The effects of various NaOH concentrations on the degree of substitution (DS), chemical structure, viscosity, color, crystallinity, morphology and the thermal properties of carboxymethyl bacterial cellulose powder from nata de coco (CMCn) were evaluated. In the carboxymethylation process, the optimal condition resulted from NaOH amount of 30 g/100 mL, as this provided the highest DS value (0.92). The crystallinity of CMCn declined after synthesis but seemed to be the same in each condition. The mechanical properties (tensile strength and percentage of elongation at break), water vapor permeability (WVP) and morphology of CMCn films obtained from CMCn synthesis using different NaOH concentrations were investigated. The tensile strength of CMCn film synthesized with a NaOH concentration of 30 g/100 mL increased, however it declined when the amount of NaOH concentration was too high. This result correlated with the DS value. The highest percent elongation at break was obtained from CMCn films synthesized with 50 g/100 mL NaOH, whereas the elongation at break decreased when NaOH concentration increased to 60 g/100 mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.