While humans are exposed to mixtures of persistent organic pollutants (POPs), their risk assessment is usually based on a chemical-by-chemical approach. To assess the health effects associated with mixed exposures, knowledge on mixture toxicity is required. Several POPs are potential ligands of the Aryl hydrocarbon receptor (AhR), which involves in xenobiotic metabolism and controls many biological pathways. This study assesses AhR agonistic and antagonistic activities of 29 POPs individually and in mixtures by using Chemical-Activated LUciferase gene eXpression bioassays with 3 transgenic cell lines (rat hepatoma DR-H4IIE, human hepatoma DR-Hep G2 and human mammary gland carcinoma DR-T47-D). Among the 29 POPs, which were selected based on their abundance in Scandinavian human blood, only exerted AhR agonistic activities, while 16 were AhR antagonists in DR-H4IIE, 5 in DR-Hep G2 and 7 in DR-T47-D when tested individually. The total POP mixture revealed to be AhR antagonistic. It antagonized EC50 TCDD inducing AhR transactivation at a concentration of 125 and 250 and 500 fold blood levels in DR-H4IIE, DR-T47-D and DR-Hep G2, respectively, although each compound was present at these concentrations lower than their LOEC values. Such values could occur in real-life in food contamination incidents or in exposed populations. In DR-H4IIE, the antagonism of the total POP mixture was due to chlorinated compounds and, in particular, to PCB-118 and PCB-138 which caused 90% of the antagonistic activity in the POP mixture. The 16 active AhR antagonists acted additively. Their mixed effect was predicted successfully by concentration addition or generalized concentration addition models, rather than independent action, with only two-fold IC 50 underestimation. We also attained good predictions for the full doseresponse curve of the antagonistic activity of the total POP mixture.
TCDD (2,3,7, and several other environment/food-borne toxic compounds induce their toxicity via the aryl hydrocarbon receptor (AhR). AhR is also modulated by various endogenous ligands e.g. highly potent tryptophan (Trp)-derivative FICZ (6-formylindolo[3,2-b]carbazole) and natural ligands abundant in the human diet e.g. polyphenols. Therefore, evaluating AhR species-specific responses is crucial for understanding AhR physiological functions, establishing risk assessments, and exploring the applicability of AhR mediators in drug and food industry towards human-based usages. We studied AhR transactivation of FICZ/TCDD in vitro in a time-dependent and species-specific manner using dioxin responsive luciferase reporter gene assays derived from rat (DR-H4IIE) and human (DR-HepG2) hepatoma cells. We observed for the first time that FICZ potency was similar in both cell lines and was 40 times higher than TCDD in DR-HepG2 cells. Depleting
2Trp-derivative endogenously produced ligands by using culture medium without Trp, resulted in 3-fold higher AhR activation upon adding FICZ in DR-H4IIE cells, in contrast to DR-HepG2 cells which revealed a fast degradation of FICZ induction from 10h post-exposure to complete disappearance after 24h. Seven polyphenols and a mixture thereof, chosen based on commercially recommended doses and adjusted to human realistic exposure, caused rat and human species-specific AhR responses. Two isoflavones (daidzein and genistein) induced rat AhR synergistic effects with FICZ and/or TCDD, while quercetin, chrysin, curcumin, resveratrol, and the mixture exerted a strong inhibitory effect on the human AhR. Strikingly, resveratrol and quercetin at their realistic nanomolar concentrations acted additively in the mixture to abolish human AhR activation induced by various TCDD concentrations. Taken together, these results illustrate the species-specific complexity of AhR transcriptional activities modulated by various ligands and highlight the need for studies of human-based approaches.
In vitro profiling of the potential endocrine disrupting activities affecting steroid and aryl hydrocarbon receptors of compounds and mixtures prevalent in human drinking water resources. Chemosphere, 258.
As recognized risk factor to pose a health threat to humans and wildlife globally, atmospheric particulate matter (PM) were collected from a North African coastal city (Bizerte, Tunisia) for one year, and were characterized for their chemical compositions, including mercury (Hg PM), as well as organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs)), organic carbon (OC) and organic nitrogen (ON), determined in a previous study. Then, we applied an in vitro reporter gene assay (DR-CALUX) to detect and quantify the dioxin-like activity of PM-associated organic contaminants. Results showed that average Hg PM concentration over the entire sampling period was found to be 13.40 ± 12.01 pg m-3. Seasonal variation in the Hg PM concentration was observed with lower values in spring and summer and higher values in winter and autumn due to the variation of meteorological conditions together with the emission sources. Principal component analysis suggested that fossil fuel combustion and a nearby cement factory were the dominant anthropogenic Hg PM sources. Aryl hydrocarbon receptor (AhR)-mediated activities were observed in all organic extracts of atmospheric PM from Bizerte city (388.3-1543.6 fg m-3), and shows significant positive correlations with all PM-associated organic contaminants. A significant proportion of dioxin-like activity of PM was related to PAHs. The dioxin-like activity followed the same trend as PM-associated organic contaminants, with higher dioxin-like activity in the cold season than in the warm season, indicating the advantage and utility of the use of bioassays in risk assessment of complex environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.