UVA irradiation leads to photoaging including clinical features such as wrinkle formation, reduced recoil capacity and blister formation of the skin. Besides synthesis of the extracellular matrix, its regulated degradation by various matrix-metalloproteinases (MMPs) determines the amount and the composition of the extracellular matrix within the dermis and the basement membrane of the dermo-epidermal junction. In this study we therefore ascertained whether UV irradiation could modulate the synthesis of MMPs with substrate specificities for dermal (collagen I, III, V) and basement membrane compounds (collagen IV, VII, proteoglycans, laminin) and whether synthesis of the counteracting tissue inhibitor of metalloproteinases (TIMP-1) was also affected. Following UVA irradiation specific mRNAs of MMPs 1, 2 and 3 were induced concomitantly up to 5-fold compared to mock irradiated controls. In contrast, TIMP-1 mRNA levels remained unaltered. Immunoprecipitation indicated that after UVA irradiation synthesis and secretion of MMPs 1, 2 and 3 into the supernatant increased. Taken together, our data show that UVA irradiation coordinately induced MMPs 1, 2 and 3 implying similar mechanisms in their regulatory pathways, while TIMP-1 synthesis was not altered. Hence, unbalanced synthesis of MMPs potentially contributes to the dissolution of dermal and basement membrane compounds finally leading to blister formation and cutaneous photoaging.
Selective overexpression of Human epididymal secretory protein E4 (HE4) points to a role in ovarian cancer tumorigenesis but little is known about the role the HE4 gene or the gene product plays. Here we show that elevated HE4 serum levels correlate with chemoresistance and decreased survival rates in EOC patients. HE4 overexpression promoted xenograft tumor growth and chemoresistance against cisplatin in an animal model resulting in reduced survival rates. HE4 displayed responses to tumor microenvironment constituents and presented increased expression as well as nuclear translocation upon EGF, VEGF and Insulin treatment and nucleolar localization with Insulin treatment. HE4 interacts with EGFR, IGF1R, and transcription factor HIF1α. Constructs of antisense phosphorothio-oligonucleotides targeting HE4 arrested tumor growth in nude mice. Collectively these findings implicate increased HE4 expression as a molecular factor in ovarian cancer tumorigenesis. Selective targeting directed towards the HE4 protein demonstrates therapeutic benefits for the treatment of ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.