We tested the validity of the Hexoskin wearable vest to monitor heart rate (HR), breathing rate (BR), tidal volume (VT), minute ventilation, and hip motion intensity (HMI) in comparison with laboratory standard devices during lying, sitting, standing, and walking. Twenty healthy young volunteers participated in this study. First, participants walked 6 min on a treadmill at speeds of 1, 3, and 4.5 km/h followed by increasing treadmill grades until 80% of their predicted maximal heart rate. Second, lying, sitting, and standing tasks were performed (5 min each) followed by 6 min of treadmill walking at 80% of their ventilatory threshold. Analysis of each individual's mean values under each resting or exercise condition by the 2 measurement systems revealed low coefficient of variation and high intraclass correlation values for HR, BR, and HMI. The Bland-Altman results from HR, BR, and HMI indicated no deviation of the mean value from zero and relatively small variability about the mean. VT and minute ventilation were provided in arbitrary units by the Hexoskin device; however, relative magnitude of change from Hexoskin closely tracked the laboratory standard method. Hexoskin presented low variability, good agreement, and consistency. The Hexoskin wearable vest was a valid and consistent tool to monitor activities typical of daily living such as different body positions (lying, sitting, and standing) and various walking speeds.
Currently, oxygen uptake () is the most precise means of investigating aerobic fitness and level of physical activity; however, can only be directly measured in supervised conditions. With the advancement of new wearable sensor technologies and data processing approaches, it is possible to accurately infer work rate and predict during activities of daily living (ADL). The main objective of this study was to develop and verify the methods required to predict and investigate the dynamics during ADL. The variables derived from the wearable sensors were used to create a predictor based on a random forest method. The temporal dynamics were assessed by the mean normalized gain amplitude (MNG) obtained from frequency domain analysis. The MNG provides a means to assess aerobic fitness. The predicted during ADL was strongly correlated (r = 0.87, P < 0.001) with the measured and the prediction bias was 0.2 ml·min−1·kg−1. The MNG calculated based on predicted was strongly correlated (r = 0.71, P < 0.001) with MNG calculated based on measured data. This new technology provides an important advance in ambulatory and continuous assessment of aerobic fitness with potential for future applications such as the early detection of deterioration of physical health.
Morbidly obese women have slower HR kinetics and altered cardiac modulation during submaximal exercise. However, aerobic exercise training can produce beneficial adaptations in HRV and faster HR kinetics following GBS.
Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O, deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O difference (a-vO) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O, a-vO, HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.