Secondarily marine tetrapod lineages have independently evolved osmoregulatory adaptations for life in salt water but inferring physiological changes in extinct marine tetrapods is difficult. The Mesozoic crocodylomorph clade Thalattosuchia is unique in having both direct evidence from natural endocasts and several proposed osteological correlates for salt exocrine glands. Here, we investigate salt gland evolution in thalattosuchians by creating endocranial reconstructions from CT scans of eight taxa (one basal thalattosuchian, one teleosauroid, two basal metriorhynchoids and four metriorhynchids) and four outgroups (three extant crocodylians and the basal crocodyliform Protosuchus) to identify salt gland osteological correlates. All metriorhynchoids show dorsolateral nasal cavity expansions corresponding to the location of nasal salt glands in natural casts, but smaller expansions in teleosauroids correspond more with the cartilaginous nasal capsule. The different sizes of these expansions suggest the following evolutionary sequence: (1) plesiomorphically small glands present in semi-aquatic teleosauroids draining through the nasal vestibule; (2) moderately sized glands in the basalmost metriorhynchoid Pelagosaurus; and (3) hypertrophied glands in the clade comprising Eoneustes and metriorhynchids, with a pre-orbital fenestra providing a novel exit for salt drainage. The large gland size inferred from basal metriorhynchoids indicates advanced osmoregulation occurred while metriorhynchoids were semi-aquatic. This pattern does not precisely fit into current models of physiological evolution in marine tetrapods and suggests a unique sequence of changes as thalattosuchians transitioned from land to sea.
Thalattosuchians were a predominately marine clade of Mesozoic crocodylomorphs, including semi‐aquatic teleosauroid and obligately pelagic metriorhynchid subclades. Recent advances in our understanding of thalattosuchian endocranial anatomy have revealed new details of the evolutionary transition from terrestrial to marine to pelagic taxa. Paranasal sinuses, however, have received little attention. Herein, we investigate the evolution of the paranasal sinus system and part of the upper respiratory system (nasopharyngeal ducts) in Thalattosuchia, by reconstructing the nasal and paranasal anatomy in CT scans of seven thalattosuchian skulls: one teleosauroid, two basal metriorhynchoids and four metriorhynchids. Our outgroups were: three extant crocodylian species (including adult and subadult skulls) and the basal crocodyliform Protosuchus. We found thalattosuchians exhibit exceptionally reduced paranasal sinus systems, solely comprising the antorbital sinus, as has been previously proposed. The semi‐aquatic basal thalattosuchians Palgiopthalmosuchus gracilirostris and Pelagosaurus typus both have an antorbital sinus partially located medial to a reduced external antorbital fenestra and broadly communicating with the dorsal alveolar canal. In pelagic metriorhynchids, the antorbital cavity is more extensive than in basal taxa and possibly had an active function associated with a hypothesized accessory suborbital diverticulum, but our reconstructions are insufficient to confirm or reject the presence of such a diverticulum. The nasopharyngeal ducts of metriorhynchids are dorsoventrally enlarged, possibly enabling stronger ventilation. The sequence of acquisition of craniofacial adaptations show a mosaic pattern and appears to predate many skeletal adaptations, suggesting these changes occurred early in the thalattosuchian marine transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.