Agave species are important crassulacean acid metabolism (CAM) plants and widely cultivated in tropical areas for producing tequila spirit and fiber. The hybrid H11648 of Agave ((A. amaniensis × A. angustifolia) × A. amaniensis) is the main cultivar for fiber production in Brazil, China, and African countries. Small Auxin Up-regulated RNA (SAUR) genes have broad effect on auxin signaling-regulated plant growth and development, while only few SAUR genes have been reported in Agave species. In this study, we identified 43, 60, 24, and 21 SAUR genes with full-length coding regions in A. deserti, A. tequilana, A. H11648, and A. americana, respectively. Although phylogenetic analysis revealed that rice contained a species-specific expansion pattern of SAUR gene, no similar phenomena were observed in Agave species. The in silico expression indicated that SAUR genes had a distinct expression pattern in A. H11648 compared with other Agave species; and four SAUR genes were differentially expressed during CAM diel cycle in A. americana. Additionally, an expression analysis was conducted to estimate SAUR gene expression during different leaf developmental stages, abiotic and biotic stresses in A. H11648. Together, we first characterized the SAUR genes of Agave based on previously published transcriptome datasets and emphasized the potential functions of SAUR genes in Agave’s leaf development and stress responses. The identification of which further expands our understanding on auxin signaling-regulated plant growth and development in Agave species.
Coffee is one of the most popular beverages around the world, which is mainly produced from the allopolyploid Coffea arabica. The genomes of C. arabica and its two ancestors C. canephora and C. eugenioides have been released due to the development of next generation sequencing. However, few studies on C. arabica are related to the PIN-FORMED (PIN) auxin efflux transporter despite its importance in auxin-mediated plant growth and development. In the present study, we conducted a genome-wide analysis of the PIN gene family in the three coffee species. Totals of 17, 9 and 10 of the PIN members were characterized in C. Arabica, C. canephora and C. eugenioides, respectively. Phylogenetic analysis revealed gene loss of PIN1 and PIN2 homologs in C. arabica, as well as gene duplication of PIN5 homologs during the fractionation process after tetraploidy. Furthermore, we conducted expression analysis of PIN genes in C. arabica by in silico and qRT-PCR. The results revealed the existence of gene expression dominance in allopolyploid coffee and illustrated several PIN candidates in regulating auxin transport and homeostasis under leaf rust fungus inoculation and the tissue-specific expression pattern of C. arabica. Together, this study provides the basis and guideline for future functional characterization of the PIN gene family.
Sisal is widely cultivated in tropical areas for fiber production. The main sisal cultivar, Agave H11648 ((A. amaniensis × A. angustifolia) × A. amaniensis) has a relatively scarce molecular basis and no genomic information. Next-generation sequencing technology has offered a great opportunity for functional gene mining in Agave species. Several published Agave transcriptomes have already been reused for gene cloning and selection pressure analysis. There are also other potential uses of the published transcriptomes, such as meta-analysis, molecular marker detection, alternative splicing analysis, multi-omics analysis, genome assembly, weighted gene co-expression network analysis, expression quantitative trait loci analysis, miRNA target site prediction, etc. In order to make the best of our published transcriptome of A. H11648 leaf, we here represent a data descriptor, with the aim to expand Agave bio information and benefit Agave genetic researches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.