Maternal cigarette smoking during pregnancy can result in a wide variety of adverse fetal outcomes, ranging from preterm delivery and low birth weight, to sudden infant death syndrome. In addition, in utero tobacco smoke exposure is associated with delayed or impaired neuropsychological development. Although the causative agent in tobacco smoke that leads to these aberrations is not known, some studies have concluded that nicotine may play an important role. Many studies using animal models of prenatal nicotine exposure have supported the hypothesis that nicotine may directly and/or indirectly cause impairments in fetal and neonatal development. However, in many of the animal studies nicotine has been administered acutely to naive dams, which could lead to significant fetal hypoxia; some routes of drug administration are also very stressful to pregnant dams, and changes in stress hormones could also create an unfavorable fetal environment. In this study, pregnant mice were exposed to chronic nicotine via the drinking solution; locomotor activity and sensitivity to nicotine were evaluated in the offspring. We have previously shown that oral nicotine administration produces behavioral and physiological changes that resemble those seen following other routes of nicotine administration. Although oral nicotine exposure did not significantly alter any aspect of the pregnancy, dams drinking a nicotine-containing solution consumed approximately 20% less volume, compared to saccharin controls. All animals were cross fostered to nicotine naïve lactating dams, immediately after birth. On PN40 and PN60, male mice exposed to in utero nicotine demonstrated significant locomotor hyperactivity in an open filed arena. Although female animals did not show any signs of hyperactivity, they did have a significant attenuation of their hypothermic response to acute nicotine challenge. These results suggest that oral nicotine delivery to pregnant mice causes persistent, gender-dependant changes in behavior and sensitivity to nicotine. This model may be very useful for future studies that try to more accurately define the windows of sensitivity for nicotine exposure and the possible underlying neurochemical mechanisms involved.
We conclude that an early 3-day course of dexamethasone therapy increases survival without CLD, reduces CLD, and reduces late dexamethasone therapy in high-risk, low birth weight infants who receive surfactant therapy for respiratory distress syndrome. Potential benefits of early dexamethasone therapy at the dosing schedule used in this trial need to be weighed against the risk for early intestinal perforation.
To study which proteins of classical swine fever virus (CSFV) are able to confer protective immunity in swine, N-terminal autoprotease, viral core protein, and the three structural glycoproteins were expressed via vaccinia virus recombinants (VVR). CSFV proteins synthesized in cells infected with VVR showed migration characteristics on sodium dodecyl sulfate gels identical to those of their respective CSFV counterparts. Apparently authentic dimerization of the recombinant glycoproteins was observed. The glycoproteins E0 and E2 were detected on the surfaces of VVR-infected cells. In protection experiments, swine were immunized with the different VVR, and the generation of humoral immune response was monitored. Only animals vaccinated with VVR expressing E0 and/or E2 resisted a lethal challenge infection with CSFV. Glycoprotein E0 represents a second determinant for the induction of protective immunity against classical swine fever.
Thirty-four joints (19 knees, 15 wrists) of 31 patients suffering from rheumatoid arthritis and related disorders were examined prior to and following intravenous administration of Gadolinium-DTPA (0.1 mmol/kg body weight). T1-weighted spin-echo sequences and the gradient-echo technique FLASH were applied. FLASH scanning was used for the registration of the time-dependent changes of signal intensity following Gd-DTPA. Synovial proliferations exhibited a rapid and marked increase of signal intensity whereas fatty tissue, bone marrow, muscle and synovial effusion demonstrated only minor changes, causing enhanced contrast between synovial pannus and joint effusion or other neighbouring structures. Within the synovial pannus, ratios (absolute signal increase) of 131.3 +/- 53.4% and 122.9 +/- 51.1% were found in T1-weighted spin-echo and in FLASH sequences respectively. The average signal increase gradient of pannus (108.2 +/- 70.6%/min) was significantly (p less than 0.001) different from muscle (13.4 +/- 7.8%/min), fatty tissue (10.2 +/- 8.4%/min), bone marrow (5.5 +/- 7.1%/min), and joint effusion (14.7 +/- 7.8%/min).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.