This paper proposes a novel strategy for depth video denoising in RGBD camera systems. Depth map sequences obtained by state-of-the-art Time-of-Flight sensors suffer from high temporal noise. Hence, all high-level RGB video renderings based on the accompanied depth maps' 3D geometry like augmented reality applications will have severe temporal flickering artifacts. The authors approached this limitation by decoupling depth map upscaling from the temporal denoising step. Thereby, denoising is processed on raw pixels including uncorrelated pixel-wise noise distributions. The authors' denoising methodology utilizes joint sparse 3D transform-domain collaborative filtering. Therein, they extract RGB texture information to yield a more stable and accurate highly sparse 3D depth block representation for the consecutive shrinkage operation. They show the effectiveness of our method on real RGBD camera data and on a publicly available synthetic data set. The evaluation reveals that the authors' method is superior to state-of-the-art methods. Their method delivers flicker-free depth video streams for future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.