Abstract-Radiative transfer theory and modeling assumptions were applied at laboratory and field scales in order to study the link between leaf reflectance and transmittance and canopy hyperspectral data for chlorophyll content estimation. This study was focused on 12 sites of Acer saccharum M. perform better than when all single spectral reflectance channels from hyperspectral airborne CASI data are used, and in addition, the effect of shadows and LAI variation are minimized. Estimates of leaf pigment by hyperspectral remote sensing of closed forest canopies were shown to be feasible with root mean square errors (RMSE's) ranging from 3 to 5 5 g cm 2 . Pigment estimation by model inversion as described in this paper using these red edge in-
Leaf chlorophyll is central to the exchange of carbon, water and energy between the biosphere and the atmosphere, and to the functioning of terrestrial ecosystems. This paper presents the first spatially continuous view of terrestrial leaf chlorophyll content (ChlLeaf) across a global scale. Weekly maps of ChlLeaf were produced from ENIVSAT MERIS full resolution (300 m) satellite data with a two-stage physically-based radiative transfer modelling approach. Firstly, leaf-level reflectance was derived from top-of-canopy satellite reflectance observations using 4-Scale and SAIL canopy radiative transfer models 3 for woody and non-woody vegetation, respectively. Secondly, the modelled leaf-level reflectance was used in the PROSPECT leaf-level radiative transfer model to derive ChlLeaf. The ChlLeaf retrieval algorithm was validated with measured ChlLeaf data from sample measurements at field locations, and covering six plant functional types (PFTs). Modelled results show strong relationships with field measurements, particularly for deciduous broadleaf forests (R 2 = 0.67; RMSE = 9.25 µg cm -2 ; p<0.001), croplands (R 2 = 0.41; RMSE = 13.18 µg cm -2 ; p<0.001) and evergreen needleleaf forests (R 2 = 0.47; RMSE = 10.63 µg cm -2 ; p<0.001). When the modelled results from all PFTs were considered together, the overall relationship with measured ChlLeaf remained good (R 2 = 0.47, RMSE = 10.79 µg cm -2 ; p<0.001).This result was an improvement on the relationship between measured ChlLeaf and a commonly used chlorophyll-sensitive spectral vegetation index; the MERIS Terrestrial Chlorophyll Index (MTCI; R 2 = 0.27, p<0.001). The global maps show large temporal and spatial variability in ChlLeaf, with evergreen broadleaf forests presenting the highest leaf chlorophyll values with global annual median of 54.4 µg cm -2 . Distinct seasonal ChlLeaf phenologies are also visible, particularly in deciduous plant forms, associated with budburst and crop growth, and leaf senescence. It is anticipated that this global ChlLeaf product will make an important step towards the explicit consideration of leaf-level biochemistry in terrestrial water, energy and carbon cycle modelling.
Physical principles applied to remote sensing data are key to successfully quantifying vegetation physiological condition from the study of the light interaction with the canopy under observation. We used the fluorescence-reflectance-transmittance (FRT) and PROSPECT leaf models to simulate reflectance as a function of leaf biochemical and fluorescence variables. A series of laboratory measurements of spectral reflectance at leaf and canopy levels and a modeling study were conducted, demonstrating that effects of chlorophyll fluorescence (CF) can be detected by remote sensing. The coupled FRT and PROSPECT model enabled CF and chlorophyll a + b (Ca + b) content to be estimated by inversion. Laboratory measurements of leaf reflectance (r) and transmittance (t) from leaves with constant Ca + b allowed the study of CF effects on specific fluorescence-sensitive indices calculated in the Photosystem I (PS-I) and Photosystem II (PS-II) optical region, such as the curvature index [CUR; (R675.R690)/R2(683)]. Dark-adapted and steady-state fluorescence measurements, such as the ratio of variable to maximal fluorescence (Fv/Fm), steady state maximal fluorescence (F'm), steady state fluorescence (Ft), and the effective quantum yield (delta F/F'm) are accurately estimated by inverting the FRT-PROSPECT model. A double peak in the derivative reflectance (DR) was related to increased CF and Ca + b concentration. These results were consistent with imagery collected with a compact airborne spectrographic imager (CASI) sensor from sites of sugar maple (Acer saccharum Marshall) of high and low stress conditions, showing a double peak on canopy derivative reflectance in the red-edge spectral region. We developed a derivative chlorophyll index (DCI; calculated as D705/D722), a function of the combined effects of CF and Ca + b content, and used it to detect vegetation stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.