Endothelin is a potent pressor agent mediated primarily through activation of endothelin-A receptors on vascular smooth muscle. Surprisingly, there is no consensus in the literature regarding the role of endothelin itself or endothelin-A receptors in hypertension. The goal of this study was to compare the effects of the novel, selective endothelin-A receptor antagonist BMS-182874 in various models of hypertension. BMS-182874 specifically inhibited the pressor response to endothelin-1 (0.3 nmol/kg IV) in Sprague-Dawley rats in a dose-dependent manner (ED25 = 8 mumol/kg IV) but had no effect on changes in mean arterial pressure brought about by other vasoactive agents. The antihypertensive effects of BMS-182874 were evaluated in conscious deoxycorticosterone acetate (DOCA)--salt hypertensive rats, spontaneously hypertensive rats (SHR), and sodium-deplete SHR. BMS-182874 reduced blood pressure in DOCA--salt hypertensive rats when administered at a dose of 30, 100, or 300 mumol/kg IV. A maximal decrease of approximately 45 mm Hg was observed after treatment with 100 mumol/kg IV. Three days of oral or intravenous treatment with BMS-182874 (100 mumol/kg) elicited a sustained decrease in blood pressure in the DOCA--salt hypertensive rats. In SHR, BMS-182874 decreased blood pressure by approximately 30 mm Hg, but the antihypertensive effects were similar at doses of 75, 150, and 450 mumol/kg PO. In sodium-deplete SHR, BMS-182874 did not significantly reduce blood pressure. In summary, BMS-182874 is a specific, orally active endothelin-A receptor antagonist that is efficacious in mineralocorticoid hypertension in rats but has less effect in sodium-replete and sodium-deplete SHR.(ABSTRACT TRUNCATED AT 250 WORDS)
Substitution at the ortho position of N-(3,4-dimethyl-5-isoxazolyl) benzenesulfonamide led to the identification of the biphenylsulfonamides as a novel series of endothelin-A (ETA) selective antagonists. Appropriate substitutions on the pendant phenyl ring led to improved binding as well as functional activity. A hydrophobic group such as isobutyl or isopropoxyl was found to be optimal at the 4'-position. Introduction of an amino group at the 2'-position also led to improved analogues. Combination of the optimal 4'-isobutyl substituent with the 2'-amino function afforded an analogue (20, BMS-187308) with improved ETA binding affinity and functional activity. Compound 20 also has good oral activity in inhibiting the pressor effect caused by an ET-1 infusion in rats. Doses of 10 and 30 micromol/kg iv 20 attenuated the pressor responses due to the administration of exogenous ET-1 to conscious monkeys, indicating that the compound inhibits the in vivo activity of endothelin-1 in nonhuman primates.
A series of novel quinoxaline heterocycle containing angiotensin II receptor antagonist analogs were prepared. This heterocycle was coupled to the biphenyl moiety via an oxygen atom linker instead of a carbon atom. Many of these analogs exhibit very potent activity and long duration of effect. Interestingly, the N-oxide quinoxaline analog was more potent than the nonoxidized quinoxaline as in the comparison of compounds 5 vs 30. In order to improve oral activity, the carboxylic acid function of these compounds was converted to the double ester. This change did result in an improvement in oral activity as represented by compound 44.
The synthesis and structure-activity relationship (SAR) studies of a series of 4'-oxazolyl-N-(3,4-dimethyl-5-isoxazolyl)[1, 1'-biphenyl]-2-sulfonamide derivatives as endothelin-A (ET(A)) receptor antagonists are described. The data reveal a remarkable improvement in potency and metabolic stability when the 4'-position of the biphenylsulfonamide is substituted with an oxazole ring. Additional 2'-substitution of an acylaminomethyl group further increased the binding activity and provided one of the first subnanomolar ET(A)-selective antagonists in the biphenylsulfonamide series (17, ET(A) K(i) = 0.2 nM). Among the compounds described, 3 (N-(3,4-dimethyl-5-isoxazolyl)-4'-(2-oxazolyl)[1, 1'-biphenyl]-2-sulfonamide; BMS-193884) had the optimum pharmacological profile and was therefore selected as a clinical candidate for studies in congestive heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.