Abstract. Signatures of quadratic forms have been generalized to hermitian forms over algebras with involution. In the literature this is done via Morita theory, which causes sign ambiguities in certain cases. In this paper, a hermitian version of the Knebusch Trace Formula is established and used as a main tool to resolve these ambiguities.
Associative division algebras are a rich source of fully diverse space-time
block codes (STBCs). In this paper the systematic construction of fully diverse
STBCs from nonassociative algebras is discussed. As examples, families of fully
diverse $2\times 2$, $2\times 4$ multiblock and $4\x 4$ STBCs are designed,
employing nonassociative quaternion division algebras.Comment: 23 pages; final version; to appear in Advances in Mathematics of
Communication
Weakly hyperbolic involutions are introduced and a proof is given of the following local-global principle: a central simple algebra with involution of any kind is weakly hyperbolic if and only if its signature is zero for all orderings of the ground field. Also, the order of a weakly hyperbolic algebra with involution is a power of two, this being a direct consequence of a result of Scharlau. As a corollary an analogue of Pfister's local-global principle is obtained for the Witt group of hermitian forms over an algebra with involution.
In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.