Cyclic behaviour is observed in volcanic phenomena ranging from caldera collapses to explosions, spattering or lava fountaining. The repeating processes can define irregular, regular or systematically changing patterns. These patterns yield information about the subsurface structure, which often is not considered in detail. We analyse the pattern of 7058 lava fountaining episodes that occur between 2 May and 14 June 2021 during the Geldingadalir eruption, Iceland. Our seismometer records the lava fountaining episodes as tremor episodes. We analyse the seismic tremor amplitude, the episode duration, the repose time and the sum of episode duration and repose time (cycle duration). We define six periods characterised by different patterns: Three periods feature long episodes that exponentially shorten with time. One period features coexisting long and short episodes in a haphazard sequence. One period shows a stable pulsing duration but increasing repose time, and one period has stable, short episodes and repose times. We conclude that the episodic fountaining starts because a shallow-conduit container forms on 2 May shifting the magma degassing from sustained continuous to an episodic state. This situation evolves until 11 May when a semi-stable state is reached. The length of the repose times is most likely influenced by the amount of outgassed magma present in the uppermost part of the shallow conduit. Finally, we suggest that the vent is mechanically eroded and widens with time causing increasing seismic tremor amplitudes. However, the trends are frequently punctuated by partial crater wall collapses that temporarily disrupt the system.
Pulsating behaviour is observed in volcanic phenomena ranging from caldera collapses to explosions, spattering or lava fountaining. The repeating processes can define irregular, regular or systematically changing patterns. These patterns yield information about the subsurface structure, which often is not considered in detail. We analyse the pattern of 7058 lava fountaining episodes that occur between 2 May and 14 June 2021 during the Fagradalsfjall eruption, Iceland. Our seismometer records the lava fountaining episodes as tremor pulses. We analyse the seismic tremor amplitude, the pulse duration, the repose time and the sum of pulse duration and repose time (cycle duration). We define six periods characterised by different patterns: Three periods feature long pulses that exponentially shorten with time. One period features coexisting long and short pulses in a haphazard sequence. One period shows a stable pulsing duration but increasing repose time and one period has stable, short pulses and repose times. We conclude that the episodic fountaining starts because a shallow-conduit container forms on 2 May shifting the magma degassing from sustained continuous to an episodic state. This situation evolves until 11 May when a semi-stable state is reached. The length of the repose times are most likely influenced by the amount of outgassed magma present in the uppermost part of the shallow conduit. Finally, we suggest that the vent is mechanically eroded and widens with time causing increasing seismic tremor amplitudes. However, the trends are frequently punctuated by partial crater wall collapses that temporarily disrupt the system.
Lake sediment records give valuable insight into the dynamic events that characterized the last deglaciation in Iceland. Here, we focus on the well‐dated sediment record from Hestvatn, a low‐elevation lake in south Iceland, that features six graded bedding events deposited by outburst floods from glacial lakes dammed by the decaying Iceland Ice Sheet (IIS) in the time period of the Vedde Ash and the G10ka Series tephra. Using climate proxies preserved in the sediment cores, in conjunction with regional glacial geomorphology, we reconstruct the retreat of the IIS in south Iceland, from a marine‐based glacier during the Younger Dryas to a land‐based glacier during the Preboreal. As the ice sheet margin withdrew to the central highlands, ice‐dammed lakes formed along glacier margins. The ice‐dams were occasionally breached, generating large‐scale jökulhlaups (catastrophic outburst floods) that deposited thick turbidite sequences preserved in the sediment record of Hestvatn. The high concentration of volcanic material incorporated within deglacial sediments indicates that along with IIS retreat, subglacial volcanic activity may have helped initiate some of the jökulhlaups. Onset of more stable Holocene conditions was reached after the final turbidite at ~10 ka bp, when the IIS had withdrawn from most of the highlands of Iceland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.