Novel affinity-purified antibodies against human SGLT1 (hSGLT1) and SGLT2 (hSGLT2) were used to localize hSGLT2 in human kidney and hSGLT1 in human kidney, small intestine, liver, lung, and heart. The renal locations of both transporters largely resembled those in rats and mice; hSGLT2 and SGLT1 were localized to the brush border membrane (BBM) of proximal tubule S1/S2 and S3 segments, respectively. Different to rodents, the renal expression of hSGLT1 was absent in thick ascending limb of Henle (TALH) and macula densa, and the expression of both hSGLTs was sex-independent. In small intestinal enterocytes, hSGLT1 was localized to the BBM and subapical vesicles. Performing double labeling with glucagon-like peptide 1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP), hSGLT1 was localized to GLP-1-secreting L cells and GIP-secreting K cells as has been shown in mice. In liver, hSGLT1 was localized to biliary duct cells as has been shown in rats. In lung, hSGLT1 was localized to alveolar epithelial type 2 cells and to bronchiolar Clara cells. Expression of hSGLT1 in Clara cells was verified by double labeling with the Clara cell secretory protein CC10. Double labeling of human heart with aquaporin 1 immunolocalized the hSGLT1 protein in heart capillaries rather than in previously assumed myocyte sarcolemma. The newly identified locations of hSGLT1 implicate several extra renal functions of this transporter, such as fluid absorption in the lung, energy supply to Clara cells, regulation of enteroendocrine cells secretion, and release of glucose from heart capillaries. These functions may be blocked by reversible SGLT1 inhibitors which are under development.
Patient prognosis in lung cancer largely depends on early diagnosis. The exhaled breath of patients may represent the ideal specimen for future lung cancer screening. However, the clinical applicability of current diagnostic sensor technologies based on signal pattern analysis remains incalculable due to their inability to identify a clear target. To test the robustness of the presence of a so far unknown volatile organic compound in the breath of patients with lung cancer, sniffer dogs were applied.Exhalation samples of 220 volunteers (healthy individuals, confirmed lung cancer or chronic obstructive pulmonary disease (COPD)) were presented to sniffer dogs following a rigid scientific protocol. Patient history, drug administration and clinicopathological data were analysed to identify potential bias or confounders.Lung cancer was identified with an overall sensitivity of 71% and a specificity of 93%. Lung cancer detection was independent from COPD and the presence of tobacco smoke and food odours. Logistic regression identified two drugs as potential confounders.It must be assumed that a robust and specific volatile organic compound (or pattern) is present in the breath of patients with lung cancer. Additional research efforts are required to overcome the current technical limitations of electronic sensor technologies to engineer a clinically applicable screening tool.
Background: PolyADPribose polymerase (PARP) is activated by DNA strand breaks to catalyze the addition of ADPribose groups to nuclear proteins, especially PARP-1. Excessive polyADPribosylation leads to cell death through depletion of NAD ϩ and ATP. Materials and Methods: In vivo PARP activation in heart tissue slices was assayed through conversion of [ 33 P]NAD ϩ into polyADPribose (PAR) following ischemia-reperfusion (I/R) and also monitored by immunohistochemical staining for PAR. Cardiac contractility, nitric oxide (NO), reactive oxygen species (ROS), NAD ϩ and ATP levels were examined in wild type (WT) and in PARP-1 gene-deleted (PARP-1 -/-) isolated, perfused mouse hearts. Myocardial infarct size was assessed following coronary artery occlusion in rats treated with PARP inhibitors. Results: Ischemia-reperfusion (I/R) augmented formation of nitric oxide, oxygen free radicals and PARP activity. I/R induced decreases in cardiac contractility and NAD ϩ levels were attenuated in PARP-1 -/mouse hearts. PARP inhibitors reduced myocardial infarct size in rats. Residual polyADPribosylation in PARP-1 -/hearts may reflect alternative forms of PARP. Conclusions: PolyADPribosylation from PARP-1 and other sources of enzymatic PAR synthesis is associated with cardiac damage following myocardial ischemia. PARP inhibitors may have therapeutic utility in myocardial disease.
For the development of new treatment strategies against cancer, understanding signaling networks and their changes upon drug response is a promising approach to identify new drug targets and biomarker profiles. Pre‐requisites are tumor models with multiple read‐out options that accurately reflect the clinical situation. Tissue engineering technologies offer the integration of components of the tumor microenvironment which are known to impair drug response of cancer cells. We established three‐dimensional (3D) lung carcinoma models on a decellularized tissue matrix, providing a complex microenvironment for cell growth. For model generation, we used two cell lines with (HCC827) or without (A549) an activating mutation of the epidermal growth factor receptor (EGFR), exhibiting different sensitivities to the EGFR inhibitor gefitinib. EGFR activation in HCC827 was inhibited by gefitinib, resulting in a significant reduction of proliferation (Ki‐67 proliferation index) and in the induction of apoptosis (TUNEL staining, M30‐ELISA). No significant effect was observed in conventional cell culture. Results from the 3D model correlated with the results of an in silico model that integrates the EGFR signaling network according to clinical data. The application of TGFβ1 induced tumor cell invasion, accompanied by epithelial–mesenchymal transition (EMT) both in vitro and in silico. This was confirmed in the 3D model by acquisition of mesenchymal cell morphology and modified expression of fibronectin, E‐cadherin, β‐catenin and mucin‐1. Quantitative read‐outs for proliferation, apoptosis and invasion were established in the complex 3D tumor model. The combined in vitro and in silico model represents a powerful tool for systems analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.