Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities. Three subtypes have been described: TRPS I, caused by mutations in the TRPS1 gene on chromosome 8; TRPS II, a microdeletion syndrome affecting the TRPS1 and EXT1 genes; and TRPS III, a form with severe brachydactyly, due to short metacarpals, and severe short stature, but without exostoses. To investigate whether TRPS III is caused by TRPS1 mutations and to establish a genotype-phenotype correlation in TRPS, we performed extensive mutation analysis and evaluated the height and degree of brachydactyly in patients with TRPS I or TRPS III. We found 35 different mutations in 44 of 51 unrelated patients. The detection rate (86%) indicates that TRPS1 is the major locus for TRPS I and TRPS III. We did not find any mutation in the parents of sporadic patients or in apparently healthy relatives of familial patients, indicating complete penetrance of TRPS1 mutations. Evaluation of skeletal abnormalities of patients with TRPS1 mutations revealed a wide clinical spectrum. The phenotype was variable in unrelated, age- and sex-matched patients with identical mutations, as well as in families. Four of the five missense mutations alter the GATA DNA-binding zinc finger, and six of the seven unrelated patients with these mutations may be classified as having TRPS III. Our data indicate that TRPS III is at the severe end of the TRPS spectrum and that it is most often caused by a specific class of mutations in the TRPS1 gene.
Patient prognosis in lung cancer largely depends on early diagnosis. The exhaled breath of patients may represent the ideal specimen for future lung cancer screening. However, the clinical applicability of current diagnostic sensor technologies based on signal pattern analysis remains incalculable due to their inability to identify a clear target. To test the robustness of the presence of a so far unknown volatile organic compound in the breath of patients with lung cancer, sniffer dogs were applied.Exhalation samples of 220 volunteers (healthy individuals, confirmed lung cancer or chronic obstructive pulmonary disease (COPD)) were presented to sniffer dogs following a rigid scientific protocol. Patient history, drug administration and clinicopathological data were analysed to identify potential bias or confounders.Lung cancer was identified with an overall sensitivity of 71% and a specificity of 93%. Lung cancer detection was independent from COPD and the presence of tobacco smoke and food odours. Logistic regression identified two drugs as potential confounders.It must be assumed that a robust and specific volatile organic compound (or pattern) is present in the breath of patients with lung cancer. Additional research efforts are required to overcome the current technical limitations of electronic sensor technologies to engineer a clinically applicable screening tool.
It has previously been shown that, in the heterozygous state, mutations in the SOX9 gene cause campomelic dysplasia (CD) and the often associated autosomal XY sex reversal. In 12 CD patients, 10 novel mutations and one recurrent mutation were characterized in one SOX9 allele each, and in one case, no mutation was found. Four missense mutations are all located within the high mobility group (HMG) domain. They either reduce or abolish the DNA-binding ability of the mutant SOX9 proteins. Among the five nonsense and three frameshift mutations identified, two leave the C-terminal transactivation (TA) domain encompassing residues 402-509 of SOX9 partly or almost completely intact. When tested in cell transfection experiments, the recurrent nonsense mutation Y440X, found in two patients who survived for four and more than 9 years, respectively, exhibits some residual transactivation ability. In contrast, a frameshift mutation extending the protein by 70 residues at codon 507, found in a patient who died shortly after birth, showed no transactivation. This is apparently due to instability of the mutant SOX9 protein as demonstrated by Western blotting. Amino acid substitutions and nonsense mutations are found in patients with and without XY sex reversal, indicating that sex reversal in CD is subject to variable penetrance. Finally, none of 18 female patients with XY gonadal dysgenesis (Swyer syndrome) showed an altered SOX9 banding pattern in SSCP assays, providing evidence that SOX9 mutations do not usually result in XY sex reversal without skeletal malformations.
An apparent excess of sex chromosome aneuploidies (XXY, XXX, and possibly XYY) has been reported in populations of patients with schizophrenia by a number of authors. These reports have received little attention because transmission of psychosis is regarded as autosomal and not sex linked, and the detection of extra X chromosomes by Barr body estimation alone is not a reliable procedure. In this article, we review studies in which either complete karyotypes were determined for the whole sample or in which the presence of a Barr body in an individual was checked by full cytogenetic analysis. We also add two studies (of the former type) of our own--on a Swedish hospital cohort and a United States multiplex-schizophrenia family sample. These data, taken together, suggest that the sex chromosome aneuploidies, XXX and XXY, are increased in population of patients with schizophrenia, whereas too few subjects have been surveyed to determine whether an association also exists with XYY. Nevertheless, we conclude that this is consistent with a gene on the sex chromosomes having influence on the development of schizophrenia. A sex chromosome locus is compatible with an autosomal pattern of transmission if the gene is either pseudoautosomal (i.e., within the exchange region) or X-Y homologous (i.e., present in similar form in the nonrecombining regions of both X and Y chromosomes).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.