This paper provides a review of theoretical and practical aspects related to genetic management of forest trees. The implementation of international commitments on forest genetic diversity has been slow and partly neglected. Conservation of forest genetic diversity is still riddled with problems, and complexities of national legal and administrative structures. Europe is an example of a complex region where the distribution ranges of tree species extend across large geographical areas with profound environmental differences, and include many countries. Conservation of forest genetic diversity in Europe has been hampered by lack of common understanding on the management requirements for genetic conservation units of forest trees. The challenge resides in integrating scientific knowledge on conservation genetics into management of tree populations so that recommendations are feasible to implement across different countries. Here, we present pan-European minimum requirements for dynamic conservation units of forest genetic diversity. The units are natural or man-made tree populations which are managed for maintaining evolutionary processes and adaptive potential across generations. Each unit should have a designated status and a management plan, and one or more tree species recognized for as target species for genetic conservation. The minimum sizes of the units are set at 500, 50 or 15 reproducing individuals depending on tree species and conservation objectives. Furthermore, silvicultural interventions should be allowed to enhance genetic processes, as needed, and field inventories carried out to monitor regeneration and the population size. These minimum requirements are now used by 36 countries to improve management of forest genetic diversity.
Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies.
Subfossil pollen from two co-existing Betula species in Iceland, B. nana and B. pubescens, is frequently found in sediments and peat. Interpretation of the findings often depends on the ability to differentiate between the two species according to pollen size and structure. Fresh pollen samples were prepared from 70 individual trees/shrubs which had been identified to species by chromosome number. Grain diameters and pore depths were measured and ratios of grain diameter to pore depth (D/P ratios) were calculated. The mean grain diameters of pollen from diploid B. nana and tetraploid B. pubescens were 20.42 and 24.20 mm, whereas mean pore depths were 2.20 and 2.81 mm respectively. Mean D/P ratios were therefore 9.55 for B. nana and 8.85 for B. pubescens. The difference between species was statistically significant for all three pollen parameters. Grain diameter appeared to be the most useful parameter, as only about 20% of the samples were in the overlapping region of the species distributions. Pollen size (grain diameter) was also positively correlated to tree morphology, which was evaluated using species-specific botanical characters. Pollen samples from different locations/ populations in Iceland varied slightly in mean size and ratio. The size difference between pollen of B. nana and B. pubescens in this study is less than other papers have reported, which may be due to the effect of introgressive hybridisation between the two birch species in Iceland.
Spring and autumn frost tolerance was measured using material from a range-wide (50Á678 N, 38Á1588 E) provenance trial of four Russian larch species (Larix sukaczewii Dyl., L. sibirica Ledeb., L. gmelinii Rupr. and L. cajanderi Mayr.) growing in northern Sweden. Shoots were collected in early May and late September and frozen at (8, (12, (16 and (208C. Cambial damage was assessed visually after development under ideal conditions for 2 weeks. Differences in frost damage among provenances were highly significant in both spring and autumn. Autumn frost damage was significantly correlated with provenance latitude and longitude and spring frost damage was significantly correlated with provenance longitude but not latitude. Frost damage was not correlated with provenance elevation. North-western provenances showed the least damage and far-eastern provenances the greatest damage in both spring and autumn. A possible explanation for less spring frost damage to north-western provenances is adaptation to maritime conditions in proximity to the Barents Sea, which is often ice free in late winter. This would counteract early loss of frost tolerance and bud flushing if warm spells occurred in late winter. North-eastern Siberian provenances did not show similar adaptation and may exhibit increased spring frost damage if global warming eventually results in the Arctic Ocean north of Siberia becoming ice free in late winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.