Purpose
To understand the unique context forming organizational learning, the current study aims to investigate the antecedents of training and development (TD) practices as an indicator of effective organizational learning from the Vietnam hospitality sector, which has not been studied rigorously.
Design/methodology/approach
This study adopts a mixed method of quantitative and qualitative data analysis, including a path analysis partial least squares structural equation modeling (PLS-SEM) based on a sample size of 354 responses and a semi-structured interview of 32 participants to test various paths predicting training effectiveness while exploring contextual differences in the Vietnam hospitality sector.
Findings
The results show that among the variables investigated, extrinsic motivation, team support and job quality were found to be significant to TD, while intrinsic motivation was found to have no significant predictive power. To explore the reasons behind these findings, the interviews indicate that the motivations of employees in the hospitality sector, most of whom are young and have a limited length of service, are highly rooted in the organization’s cultural context.
Originality/value
This study contributes to understanding the complex context of organizational learning through an investigation of an emerging economy from Southeast Asia by adding new insights into the training and motivational theories. It has practical implications for practitioners in the hospitality sector to develop more effective learning organizations during the uncertain period of this unprecedented pandemic.
The interzeolite conversion of faujasite (FAU-type) zeolites to chabazite (CHA-type) zeolite in the presence of N,N,N-trimethyladamantammonium and N,N,N-dimethylethylcyclohexylammonium cations was investigated over a large compositional range by carefully controlling the reaction mixture compositions. Highly crystalline CHA zeolites were also obtained by the transformation of several zeolite types including EMT, LTL, LEV, RTH, and MFI frameworks. The formation of CHA zeolite from FAU zeolite precursors was substantially faster than that from zeolite L with a similar composition. High-silica CHA zeolites were also produced successfully using a mixture of TMAda with a number of less expensive organic structure-directing agents. The CHA zeolite materials have been synthesized with high crystallinity and with a Si/Al ratio ranging from 5 to 140. Our data support the importance of structural similarity between the zeolite precursors, nucleation/crystallization processes, and the zeolite product in the interzeolite conversion compared to conventional amorphous aluminosilicate gels. Our synthetic methods could be used to prepare other 8-membered ring zeolites such as AEI and AFX frameworks, potential candidates for selective catalytic reduction of NOx, light olefin production, and CO2 abatement.
A series of x%Ag/ZnO (x: 0; 1; 2; 5; 10) nanostructures were successfully synthesized through the facile method. The material's structures were confirmed through X‐ray diffraction, while their morphology, elemental distribution, and components were analyzed using cross‐sectional transmission electron microscopy (XTEM), Field‐emission scanning electron microscopy (FESEM). The optical properties of Ag/ZnO revealed a decrease in band gap from 3.2 eV to 2.83 eV and a significant reduction in photoluminescence intensity with increasing Ag nanoparticle loading on the surface of ZnO. The photocatalytic activity of synthesized Ag/ZnO flower‐like nanostructure was evaluated in the photodegradation of methylene blue (MB) under UV‐Vis irradiation. The photocatalytic results indicated that decorating Ag nanoparticles on the surface of ZnO improved the photodegradation of MB. Interestingly, the 5%Ag/ZnO showed the highest effectiveness, achieving a 99% removal efficiency of MB for 60 minutes under UV‐Vis irradiation. Notably, the ultra performance liquid chromatography‐ tandem mass spectroscopy (UPLC‐MS/MS) confirmed the structure of intermediates, while total organic carbon (TOC) removal was 47%. Moreover, the proposed mechanism for the charge transfer process was based on the results of radical scavenging experiments, which showed that superoxide was the dominant reactive species. Finally, the 5%Ag/ZnO was stable and reused at least five times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.