Purpose
Knowledge sharing (KS) and innovation are generally believed as the antecedents of key outcomes that help firms to attain and sustain competitive advantage in long term. The purpose of this paper is to analyze the mechanism of how interpersonal trust and leader support affect KS and improve firm’s innovation capabilities.
Design/methodology/approach
This is a research paper which is built using empirical data collected from 68 manufacturing and service firms in China.
Findings
First, the findings show that leader supports moderate the correlation between interpersonal trust and KS. Second, KS serves as mediator in the relationship between interpersonal trust and firm’s innovation capabilities.
Research limitations/implications
KS plays a crucial role in stimulating innovation capabilities for both manufacturing and service firms. Future research should explore the effects of the motivational factors (such as positive psychological state, perceived benefits and costs) on KS and firm’s innovation capabilities.
Practical implications
The paper provides the evidence for the positive effects of interpersonal trust on KS, which in turn is significantly associated with product innovation and process innovation. It highlights the important role of leader supports in promoting the degree of sharing knowledge among individuals to enhance innovation capabilities for firms.
Originality/value
This study puts the theory of innovation forward based on exploring the key factors that have potential and positive impacts on two specific types of innovation capability, namely, product innovation and process innovation, for both manufacturing and service firms.
This study demonstrated heavy metal removal from neutral mine drainage of a closed mine in Kyoto prefecture in pilot-scale constructed wetlands (CWs). The CWs filled with loamy soil and limestone were unplanted or planted with cattails. The hydraulic retention time (HRT) in the CWs was shortened gradually from 3.8 days to 1.2 days during 3.5 months of operation. A short HRT of 1.2 days in the CWs was sufficient to achieve the effluent standard for Cd (0.03 mg/L). The unplanted and the cattail-planted CWs reduced the average concentrations of Cd from 0.031 to 0.01 and 0.005 mg/L, Zn from 0.52 to 0.14 and 0.08 mg/L, Cu from 0.07 to 0.04 and 0.03 mg/L, and As from 0.011 to 0.006 and 0.006 mg/L, respectively. Heavy metals were removed mainly by adsorption to the soil in both CWs. The biological concentration factors in cattails were over 2 for Cd, Zn, and Cu. The translocation factors of cattails for all metals were 0.5–0.81. Sulfate-reducing bacteria (SRB) belonging to Deltaproteobacteria were detected only from soil in the planted CW. Although cattails were a minor sink, the plants contributed to metal removal by rhizofiltration and incubation of SRB, possibly producing sulfide precipitates in the rhizosphere.
The present study investigated the applicability of constructed wetlands (CWs) filled with oyster shells (OSs) for removing heavy metals from acid mine drainage (AMD). Lab-scale CWs consisted of columns (ID 12.5 cm, H 50 cm) packed with OSs or limestone, which were left unplanted or planted with cattails. Synthetic and real AMD containing 7.3 mg/L of Zn, 38.0 mg/L of Fe, and other minerals (pH = 4.0) were fed to the CWs (1 L/column) under a hydraulic retention time of 7 days in a sequencing batch mode. The effluent pH values of the CWs reached 6.9–8.3. Results show that OSs with high CaCO3 contents had higher neutralizing capability for AMD than limestone had. During 7 months of operation, all CWs were highly effective for removing Zn (88.6–99.2%); Fe (98.7–99.7%); and Cd, Cu, Pb, As, and Mn (48.2–98.9%) from both real and synthetic AMD. The mass balance in the CWs indicated accumulation in OSs or limestone as a main pathway for removing heavy metals, representing 44.8–99.3% of all metals, followed by biomass (8.8–29.9%) in the planted CWs. Other processes examined for this study only played a minor role in removing heavy metals. The higher metal treatment performance of OS CWs demonstrated the value of this aquaculture byproduct as a CW substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.