The viable but non-culturable (VBNC) state, a unique state in which a number of bacteria respond to adverse circumstances, was first discovered in 1982. Unfortunately, it has been reported that many foodborne pathogens can be induced to enter the VBNC state by the limiting environmental conditions during food processing and preservation, such as extreme temperatures, drying, irradiation, pulsed electric field, and high pressure stress, as well as the addition of preservatives and disinfectants. After entering the VBNC state, foodborne pathogens will introduce a serious crisis to food safety and public health because they cannot be detected using conventional plate counting techniques. This review provides an overview of the various features of the VBNC state, including the biological characteristics, induction and resuscitation factors, formation and resuscitation mechanisms, detection methods, and relationship to food safety.
Quorum sensing is a cell-to-cell communication system that exists widely in the microbiome and is related to cell density. The high-density colony population can generate a sufficient number of small molecule signals, activate a variety of downstream cellular processes including virulence and drug resistance mechanisms, tolerate antibiotics, and harm the host. This article gives a general introduction to the current research status of microbial quorum-sensing systems, focuses on the role of quorum-sensing systems in regulating microbial resistance mechanisms, such as drug efflux pump and microbial biofilm formation regulation, and discusses a new strategy for the treatment of drug-resistant bacteria proposed by using quorum quenching to prevent microbial resistance.
Metal–organic frameworks (MOFs) are porous coordination materials composed of multidentate organic ligands and metal ions or metal clusters. MOFs have the great potential to be utilized in antibacterial materials for biological, environmental, and food antimicrobial fields. In recent years, MOFs have been applied to various antibacterial fields due to their sustained release capability, porosity, and structural flexibility in combination with many chemicals and/or materials (such as nanoparticles, antibiotics, phytochemicals, and polymers). This review offers a detailed summary of the antibacterial applications of MOFs and their composites, focusing on the combination types of MOFs composites and the antibacterial effect in different applications. These applications are illustrated by the examples discussed in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.