2D materials, particularly those bearing in-plane anisotropic optical and electrical properties such as black phosphorus and ReS , have spurred great research interest very recently as promising building blocks for future electronics. However, current progress is limited to layered compounds that feature atomic arrangement asymmetry within the covalently bonded planes. Herein, a series of highly anisotropic nanosheets (Sb Se , Sb S , Bi S , and Sb (S, Se) ), which are composed of 1D covalently linked ribbons stacked together via van der Waals force, is introduced as a new member to the anisotropic 2D material family. These unique anisotropic nanosheets are successfully fabricated from their polymer-like bulk counterparts through a gentle water freezing-thawing approach. Angle-resolved polarized Raman spectroscopy characterization confirms the strong in-plane asymmetry of Sb Se nanosheets, and photodetection study reveals their high responsivity and anisotropic in-plane transport. This work can enlighten the synthesis and application of new anisotropic 2D nanosheets that can be potentially applied for future electronic and optoelectronic devices.
As a strong candidate for future electronics, atomically thin black phosphorus (BP) has attracted great attention in recent years because of its tunable bandgap and high carrier mobility. Here, we show that the transport properties of BP device under high electric field can be improved greatly by the interface engineering of high-quality HfLaO dielectrics and transport orientation. By designing the device channels along the lower effective mass armchair direction, a record-high drive current up to 1.2 mA/μm at 300 K and 1.6 mA/μm at 20 K can be achieved in a 100-nm back-gated BP transistor, surpassing any two-dimensional semiconductor transistors reported to date. The highest hole saturation velocity of 1.5 × 107 cm/s is also achieved at room temperature. Ballistic transport shows a record-high 36 and 79% ballistic efficiency at room temperature and 20 K, respectively, which is also further verified by theoretical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.