Currently, there are quite a lot of incorrect procedures and mistakes that occur in the forensic area, which lacks analytical approaches toward solving the causes of accidents using s–t diagrams (distance–time diagrams) combined with the software simulation applications. When analyzing accidents, the correct information is of key importance. The aim of this article is to define a new specific technical and analytical approach toward handling expert’s reports on traffic accidents in road transport at intersections, with respect to the traffic lights. A simulation program application is used as a progressive means of accident evaluation. This procedure must become a standard in the methods of modern traffic accident analysis. The application of this methodology with simulation tools for accident reconstruction enables one to perform a very precise analysis of traffic accidents. Mutual space and time relationships of vehicles’ movements have been evaluated here, depending upon the intersection signal plan. To demonstrate the methodology, a real case is used here, reconstructed by means of the complex analytical simulation software PC-Crash. A procedure processed by these means can be beneficial for forensic traffic accident analysis.
Battery safety is a prominent concern for the deployment of electric vehicles (EVs). The battery powering an EV contains highly energetic active materials and flammable organic electrolytes. Usually, an EV battery catches fire due to its thermal runaway, either immediately at the time of the accident or can take a while to gain enough heat to ignite the battery chemicals. There are numerous battery abuse testing standards and regulations available globally. Therefore, battery manufacturers are always in dilemma to choose the safest one. Henceforth, to find the optimal outcome of these two major issues, six standards (SAE J2464:2009, GB/T 31485-2015:2015, FreedomCAR:2006, ISO 12405-3:2014, IEC 62660-2:2010, and SAND2017-6295:2017) and two regulations (UN/ECE-R100.02:2013 and GTR 20:2018), that are followed by more than fifty countries in the world, are investigated in terms of their abuse battery testing conditions (crush test). This research proves that there is a need for (a) augmenting these standards and regulations as they do not consider real-life vehicle crash scenarios, and (b) one harmonised framework should be developed, which can be adopted worldwide. These outcomes will solve the battery manufacturers dilemma and will also increase the safety of EV consumers.
This study deals with monitoring of Zn layer heterogeneity on the flange of steel road barriers using magnetic measurements. The Barkhausen noise technique is employed for such purpose, and parameters extracted from Barkhausen noise signals are correlated with the true thickness of the Zn layer. The true values of the Zn layer were obtained from the metallographic images, as well as the thickness gauge CM-8825FN (Guangzhou Landtek Instruments Co. Ltd., Guangzhou, China) device. It was observed that the diffusion region lies below the Zn protective layer, which makes the thickness of the Zn layer obtained from the CM-8825FN device thicker than that measured on the metallographic images. For this reason, the chemical gradient of Zn below the Zn layer can be reported, and it affects Barkhausen noise emission. Barkhausen noise decreases along with increasing thickness of the Zn layer, and Barkhausen noise envelopes are shifted to stronger magnetic fields. The number of strong MBN pulses drops down with the increasing thickness of Zn coating at the expense of the increasing number of the weak MBN pulses. The thickness of Zn coating can be polluted by the solidification of Zn melt after galvanizing. The presence of the diffusion layer dims the contrast between ferromagnetic and paramagnetic phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.