In remote sensing, satellite images acquired from sensors provide either high spectral or high spatial resolution. The pansharpening framework is applied to remote-sensing systems to enhance the spatial quality of coarse-resolution multispectral (MS) images using information from panchromatic imagery. A multidecomposition pansharpening approach combining MS and panchromatic (PAN) images is proposed in this paper in order to bring the resolution of the low-resolution MS imagery up to that of the panchromatic images. In particular, multilevel wavelet decomposition is applied to the luminance-chrominance (YUV) space transformation (taking into account the red green and blue (RGB) bands) or extended-YUV transformation (taking into account the near infrared (NIR) band in addition to RGB) of the original MS channels, where geometrical details from the panchromatic image are introduced into the MS ones. Our approach contains a preprocessing step that consists of homogenizing the luminance, Y, and the panchromatic image reflectance, which are, respectively, a value integrated over a wavelength spectrum and simply a linear combination of some values in the same spectrum. Hence, as the panchromatic image reflectance and luminance reflectance correspond to different measurements, they do not correspond to the same physical information, which results in a difference between their histograms. Therefore, simple histogram matching is traditionally applied to panchromatic data to fit it to the luminance to avoid colour distortion after fusion. However, as the transformation concerns just the details of the panchromatic and MS images, a new scheme for matching the images which ignores the divergence between their approximations and maximizes the resemblance between their details is proposed in this work. After that, the fusion approach is applied, and in contrast to the original approach where the details of the fused MS luminance are set equal to the PAN luminance, we propose an adaptive approach in which just a part of the PAN details proportional to the similarity between the luminance and lowered PAN image is taken. Indeed, high-resolution geometrical details cannot be similar if the low-resolution details are not in good agreement. Besides, as the agreement between PAN and MS images depends on the occupation class, we have created a segmentation map and then computed separately the correlation in each region. Finally, the evaluation is done based on QuickBird and Pleiades-1A data sets showing rural and suburban areas. When compared to recent methods, our approach provides better results.
Bootstrap approach and Stochastic EM algorithm combination applied for the improvement of the multisource and multi-sensor image fusion process; was presented in this research. Improvement concerned not only image quality and reducing processing execution time as mentioned in our previous Bootstrap EM algorithm (BEM), but also regarding initialization dependence as well as fixed classes' number. Such interesting fusion algorithm for multisource and multisensor image using one stochastic phase, i.e. SEM algorithm, preceded by Bootstrap procedure was successfully implemented and tested for several prototype images. Targeted images were firstly split by an unsupervised Bayesian segmentation approach in order to determine a joint region map for the fused image. The Bootstrap approach was then applied to the targeted multisource image in conjunction with the SEM algorithm, forming hence one Bootstrap SEM algorithm called BSEM. The procedure of such algorithm involved both statistical parameters' estimation from one representative Bootstrap sample of each source or sensor images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.