In the last decades, deficiency of macro‐ and micronutrients was considered as a serious problem associated with the increase in the human population. To meet the increased demand for food consumption, the wild relative plant might serve as an important source of new genetic material for increasing macro‐ and micronutrients. To investigate this, the variations in protein content, in vitro protein digestibility, tannin content, phytic acid content, total polyphenol content, and total and bioavailability of minerals were studied in grains of ten wild sorghums and two released sorghum cultivars. The results showed significant differences (
p
≤ 0.05) in all quality tests among the genotypes. The highest percentage of total protein contents and in vitro protein digestibility were encountered in the grains of PQ‐434 (14.6%) and the released cultivar AG8 (49.8%), respectively, while the highest concentrations of total and bioavailable iron were found in the grains of Almahkara (3.17 mg/100 g) and Abusabiba (92.8 mg/100 g), respectively. The grains of wild sorghum genotype Adar Umbatikh grains were found to possess higher total zinc contents. The PCA identified only five components of eigenvalues greater than one and cumulatively accounted for 88% of the total variation. It could be concluded that Almahkara and PQ‐434 could be used as potential sources for iron and protein sorghum biofortification, respectively. Results from this study might be used in the development of new value‐added products from wild sorghum grains by‐products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.