Paget's disease of bone (PDB) is the second most common bone disease mostly developing after 50 years of age at one or more localized skeletal sites; it is associated with severely high bone turnover, bone enlargement, bowing/deformity, cracking, and pain. Here, to specifically address the origins of the deteriorated mechanical integrity, we use a cohort of control and PDB human biopsies to investigate multiscale architectural and compositional modifications to the bone structure (ie, bone quality) and relate these changes to mechanical property measurements to provide further insight into the clinical manifestations (ie, deformities and bowing) and fracture risk caused by PDB. Here, at the level of the collagen and mineral (ie, nanometer-length scale), we find a 19% lower mineral content and lower carbonate-to-phosphate ratio in PDB, which accounts for the 14% lower stiffness and 19% lower hardness promoting plastic deformation in pathological bone. At the microstructural scale, trabecular regions are known to become densified, whereas cortical bone loses its characteristic parallel-aligned osteonal pattern, which is replaced with a mosaic of lamellar and woven bone. Although we find this loss of anisotropic alignment produces a straighter crack path in mechanically-loaded PDB cases, cortical fracture toughness appears to be maintained due to increased plastic deformation. Clearly, the altered quality of the bone structure in PDB affects the mechanical integrity leading to complications such as bowing, deformities, and stable cracks called fissure fractures associated with this disease. Although the lower mineralization and loss of aligned Haversian structures do produce a lower modulus tissue, which is susceptible to deformities, our results indicate that the higher levels of plasticity may compensate for the lost microstructural features and maintain the resistance to crack growth.
Hypothalamo-pituitary disconnection (HPD) leads to low bone turnover and osteoporosis in sheep. To determine the sustainability of bone loss and its biomechanical relevance, we studied HPD-sheep 24 months after surgery (HPD þ OVX-24) in comparison to untreated control (Control), ovariectomized sheep (OVX), and sheep 12 months after HPD (HPD þ OVX-12). We performed histomorphometric, HR-pQCT, and qBEI analyses, as well as biomechanical testing of all ewes studied. Twenty-four months after HPD, histomorphometric analyses of the iliac crest showed a significant reduction of BV/TV by 60% in comparison to Control. Cortical thickness of the femora measured by HR-pQCT did not change between 12 and 24 months after HPD but remained decreased by 30%. These structural changes were caused by a persisting depression of osteoblast and osteoclast cellular activity. Biomechanical testing of the femora showed a significant reduction of bending strength, whereas calcium content and distribution was found to be unchanged. In conclusion, HPD surgery leads to a persisting low turnover status with negative turnover balance in sheep followed by dramatic cortical and trabecular bone loss with consequent biomechanical impairment. #
To obtain the root of a lower incisor through structural optimization, we used two methods: optimization with Solid Isotropic Material with Penalization (SIMP) and Soft-Kill Option (SKO). The optimization was carried out in combination with a finite element analysis in Abaqus/Standard. The model geometry was based on cone-beam tomography scans of 10 adult males with healthy bone-tooth interface. Our results demonstrate that the optimization method using SIMP for minimum compliance could not adequately predict the actual root shape. The SKO method, however, provided optimization results that were comparable to the natural root form and is therefore suitable to set up the basic topology of a dental root.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.