Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Related ArticlesRed-green luminescence in indium gallium nitride alloys investigated by high pressure optical spectroscopy Appl. Phys. Lett. 100, 162103 (2012) Role of nitrogen vacancies in the luminescence of Mg-doped GaN Appl. Phys. Lett. 100, 142110 (2012) Optical generation of polarized photoluminescence from GaAs(100) Appl. Phys. Lett. 100, 141102 (2012) Influence of non-radiative recombination on photoluminescence decay time in GaInNAs quantum wells with Gaand In-rich environments of nitrogen atoms J. Appl. Phys. 111, 063514 (2012) Europium location in the AlN: Eu green phosphor prepared by a gas-reduction-nitridation route
We report single crystal phase and non-tapered wurtzite (WZ) and zincblende twinning superlattice (ZB TSL) InP nanowires (NWs). The NWs are grown in a metalorganic vapor phase epitaxy (MOVPE) reactor using the vapor-liquid-solid (VLS) mechanism and in situ etching with HCl at a high growth temperature. Our stacking fault-free WZ and ZB TSL NWs allow access to the fundamental properties of both NW crystal structures, whose optical and electronic behaviors are often screened by polytypism or incorporated impurities. The WZ NWs show no acceptor-related emission, implying that the VLS-grown NW is almost free of impurities due to sidewall removal by HCl. They only emit light at the free exciton (1.491 eV) and the donor bound exciton transition (1.4855 eV). The ZB NWs exhibit a photoluminescence spectrum being unaffected by the twinning planes. Surprisingly, the acceptor-related emission in the ZB NWs can be almost completely removed by etching away the impurity-contaminated sidewall grown via a vapor-solid mechanism.
Under the extreme condition of the scattering length being much shorter than the wavelength, light transport in random media is strongly modified by mesoscopic interference, and can even be
We tune the emission wavelength of an InAsP quantum dot in an InP nanowire over 200 meV by depositing a SiO(2) envelope using plasma-enhanced chemical vapor deposition without deterioration of the optical quality. This SiO(2) envelope generates a controlled static strain field. Both red and blue shift can be easily achieved by controlling the deposition conditions of the SiO(2). Using atomistic empirical tight-binding calculations, we investigate the effect of strain on a quantum dot band structure for different compositions, shape, and crystal orientations. From the calculations, we estimate the applied strain in our experiment. This enables engineering of the band gap in nanowires with unprecedented possibilities to extend the application range of nanowire devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.