Robust methodology to install amide, carbamate, urea and sulfonamide functionality to the 1,8-naphthalimide scaffold has been developed and exemplified. New benzamidonaphthalimide 6, synthesised using this approach, was found to be sensitive to base whereupon fluorescence emission strongly increases (>10-fold) and red-shifts (>4000 cm). The optical properties of deprotonated 6 allow for single molecule fluorescence detection, the first example of such behaviour from this class of fluorophore.
For decades, the microalgae Isochrysis spp. have been widely utilised as a live feed in aquaculture practices. This species possesses a number of favourable characteristics, notably its long-chain omega-3 polyunsaturated fatty acid (LC n-3 PUFA) content; primarily docosahexaenoic acid (DHA, 22:6n-3). This article describes the lipid class content and composition of this microalga grown in batch culture, covering the entirety of lag, log and stationary growth phases. The total lipid was highest in the lag phase (27 pg/ cell). Total lipid significantly decreased in the exponential growth (7 pg/cell), then steadily increasing for the remainder of growth. The increase in total lipid was due to the accumulation of neutral lipid in the form of triacylglycerides. The DHA content (pg/cell) of the neutral lipid remained relatively unchanged for the duration of growth, with the influx of fatty acids being primarily myristic and palmitic acids. DHA (pg/cell) was found at relatively uniform amounts across all lipid classes. However, the DHA content as a percentage differed greatly between classes. The polar lipid class had a significantly higher DHA content, which peaked at 38 % of all polar lipid in log growth. The primary PUFA species present in the glycolipid class was stearidonic acid (18:4n-3). This work gives an overview of the lipid content and composition of Isochrysis sp. (T-Iso) over the entirety of its growth under batch culture. The lipid profile for this species at different stages of culture provides a basal data set that is useful for comparative studies using this organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.