When modern automated error-minimization methods are used along with nonpunitive error reporting systems, clinical radiotherapy seems to be highly safe. Formal error analysis studies may allow the rational design of prevention strategies that are attuned to the frequency, seriousness, and antecedent causes of many classes of potential radiotherapy errors.
Purpose The purpose of this work was to evaluate measures of increased departmental workload in relation to the occurrence of physician-related errors and incidents reaching the patient in radiation oncology. Materials and Methods All data were collected for the year 2013. Errors were defined as forms received by our departmental process improvement team; of these forms, only those relating to physicians were included in the study. Incidents were defined as serious errors reaching the patient requiring appropriate action; these were reported through a separate system. Workload measures included patient volumes and physician schedules and were obtained through departmental records for daily and monthly data. Errors and incidents were analyzed for relation with measures of workload using logistic regression modeling. Results Ten incidents occurred in the year. The number of patients treated per day was a significant factor relating to incidents (P < 0.003). However, the fraction of department physicians off-duty and the ratio of patients to physicians were not found to be significant factors relating to incidents. Ninety-one physician-related errors were identified, and the ratio of patients to physicians (rolling average) was a significant factor relating to errors (P < 0.03). The number of patients and the fraction of physicians off-duty were not significant factors relating to errors. A rapid increase in patient treatment visits may be another factor leading to errors and incidents. All incidents and 58% of errors occurred in months where there was an increase in the average number of fields treated per day from the previous month; 6 of the 10 incidents occurred in August, which had the highest average increase at 26%. Conclusions Increases in departmental workload, especially rapid changes, may lead to higher occurrence of errors and incidents in radiation oncology. When the department is busy, physician errors may be perpetuated owing to an overwhelmed departmental checks system, leading to incidents reaching the patient. Insights into workload and workflow will allow for the development of targeted approaches to preventing errors and incidents.
Purpose/objectives To report our experience of combining three approaches of an automatic plan integrity check (APIC), a standard plan documentation, and checklist methods to minimize errors in the treatment planning process. Materials/methods We developed APIC program and standardized plan documentation via scripting in the treatment planning system, with an enforce function of APIC usage. We used a checklist method to check for communication errors in patient charts (referred to as chart errors). Any errors in the plans and charts (referred to as the planning errors) discovered during the initial chart check by the therapists were reported to our institutional Workflow Enhancement (WE) system. Clinical Implementation of these three methods is a progressive process while the APIC was the major progress among the three methods. Thus, we chose to compared the total number of planning errors before (including data from 2013 to 2014) and after (including data from 2015 to 2018) APIC implementation. We assigned the severity of these errors into five categories: serious (S), near miss with safety net (NM), clinical interruption (CLI), minor impediment (MI), and bookkeeping (BK). The Mann–Whitney U test was used for statistical analysis. Results A total of 253 planning error forms, containing 272 errors, were submitted during the study period, representing an error rate of 3.8%, 3.1%, 2.1%, 0.8%, 1.9% and 1.3% of total number of plans in these years respectively. A marked reduction of planning error rate in the S and NM categories was statistically significant (P < 0.01): from 0.6% before APIC to 0.1% after APIC. The error rate for all categories was also significantly reduced (P < 0.01), from 3.4% before APIC and 1.5% per plan after APIC. Conclusion With three combined methods, we reduced both the number and the severity of errors significantly in the process of treatment planning.
Correlation functions of gauge-invariant composite operators in N = 4 super Yang-Mills theory can be computed by integrability using triangulations. The elementary tile in this process is the hexagon, which should be glued by appropriately inserting resolutions of the identity involving virtual ("mirror") magnons. We consider this problem for five-point functions of protected operators. At one-loop in the 't Hooft coupling, it is necessary to glue three adjacent tiles which involves two virtual magnons scattering among each other. We show that the result can be simplified by using an adapted mirror rotation and employing appropriate summation techniques. The mirror-particle contributions then yield hyperlogarithms of weight two. Finally, we use these results to investigate braiding prescriptions introduced in earlier work on the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.