Recent wars have heightened the need to better protect dismounted soldiers against emerging blast and ballistic threats. Traumatic Brain Injury (TBI) due to blast and ballistic loading has been a subject of many recent studies. In this paper, we report a numerical study to understand the effects of load transmitted through a combat helmet and pad system to the head and eventually to the brain during a blast event. The ALE module in LS-DYNA was used to model the interactions between fluid (air) and the structure (helmet/head assembly). The geometry model for the head was generated from the MRI scan of a human head. For computational simplicity, four major components of the head are modeled: skin, bone, cerebrospinal fluid (CSF) and brain. A spherical shape blast wave was generated by using a spherical shell air zone surrounding the helmet/head structure. A numerical evaluation of boundary conditions and numerical algorithm to capture the wave transmission was carried out first in a simpler geometry. The ConWep function was used to apply blast pressure to the 3D model. The blast pressure amplitude was found to reduce as it propagated through the foam pads, indicating the latter’s utility in mitigating blast effects. It is also shown that the blast loads are only partially transmitted to the head. In the calculation where foam pads were not used, the pressure in the skin was found to be higher due to the underwash effect in the gap between the helmet and skin, which amplified the blast pressure.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
In this study, quasi-static compression and dynamic impact experiments were conducted on helmet pads. Various layers of the foam pad: comfort, stiff and bilayer were tested to characterize their material response. In the compression tests, a piston compressed foam samples at constant velocity. The samples were tested under confined and unconfined conditions. In the dynamic impact experiments, the foam samples were impacted by a rigid projectile. Both the time histories of the force applied to the foam samples and the sample displacement were recorded to calculate the engineering strain and stress in the foam samples. The material stiffness in the impact tests was found to be several times that of the quasi-static tests.
Recent wars have highlighted the need to better protect dismounted soldiers against emerging blast and ballistic threats. Current helmets are designed to meet ballistic performance criterion. Therefore, ballistic performance of helmets has received a lot of attention in the literature. However, blast load transfer/mitigation has not been well understood for the helmet/foam pads. The pads between the helmet and head can not only absorb energy, but also produce more comfort to the head. The gap between the helmet and head due to the pads helps prevent or delay the contact between helmet shell and the head. However, the gap between the helmet shell and the head can produce underwash effect, where the pressure can be magnified under blast loading. In this paper, we report a numerical study to investigate the effects of foam pads on the load transmitted to the head under blast loading. The ALE module in the commercial code, LS-DYNA was used to model the interactions between fluid (air) and the structure (helmet/head assembly). The ConWep function was used to apply blast loading to the air surrounding the helmet/head. Since we mainly focus on the load transfer to the head, four major components of the head were modeled: skin, bone, cerebrospinal fluid (CSF) and brain. The foam pads in fielded helmets are made of a soft and a hard layer. We used a single layer with the averaged property to model both of those layers for computational simplicity. Sliding contact was defined between the foam pads and the helmet. A parametric study was carried out to understand the effects of material parameters and thickness of the foam pads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.