RECEIVED DATEWe report the changes in dispersion relations of hypersonic acoustic phonons in free-standing silicon membranes as thin as ~ 8 nm. We observe a reduction of the phase and group velocities of the fundamental flexural mode by more than one order of magnitude compared to bulk values. The modification of the dispersion relation in nanostructures has important consequences for noise control in nano and micro-electromechanical systems (MEMS/NEMS) as well as opto-mechanical devices.
The length-scales at which thermal transport crosses from the diffusive to ballistic regime are of much interest particularly in the design and improvement of nano-structured materials. In this work, we demonstrate that the departure from diffusive transport has been observed in Si and GaAs using an optical transient thermal grating technique where an arbitrary, experimentally set length scale can be imposed on a material. In a transient thermal grating experiment, crossed laser pulses interfere creating a well-defined periodic absorption and temperature profile. A probe beam is diffracted from this transient grating and length-scale dependent thermal transport properties can be determined from the signal decay. As the length scale is decreased to lengths shorter than the mean free paths of heat carrying phonons, quasi-ballistic heat transport effects become apparent allowing us to map out length scales and mean free paths relevant to nondiffusive thermal transport in Si and GaAs.
We demonstrate optically pumped polymer band-edge lasers based on a two-dimensional photonic crystal slab fabricated by nanoimprint lithography (NIL). Lasing was obtained at the photonic band-edge, where the light exhibits a low group velocity at the C point of the triangular lattice photonic crystal band structure. The active medium was composed of a dye chromophore-loaded polymer matrix directly patterned in a single step by nanoimprint lithography. Plane-wave and finite difference time domain algorithms were used to predict experimental lasing frequencies and the lasing thresholds obtained at different C points. A low laser threshold of 3 mu J/mm(2) was achieved in a defect-free photonic crystal thus showing the suitability of nanoimprint lithography to produce cost-efficient optically pumped lasers. (C) 2013 American Institute of Physics. (http://dx.doi.org/10.1063/1.4790646
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating’s thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.